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Abstract

Hadronic collider experiments have played a major role in particle physics phe-
nomenology over the last few decades. Data recorded at the Tevatron at Fermilab is
still of interest, and its successor, the Large Hadron Collider (LHC) at CERN, has
recently announced the discovery of a particle consistent with the Standard Model
Higgs boson. Hadronic colliders look set to guide the field for the next fifteen years
or more, with the discovery of more particles anticipated.

The discovery and detailed study of new particles relies crucially on the avail-
ability of high-precision theoretical predictions for both the signal and background
processes. This requires observables to be calculated to next-to-leading order (NLO)
in perturbative quantum chromodynamics (QCD). Many hadroproduction processes
of interest contain multiple particles in the final state. Until recently, this caused
a bottleneck in NLO QCD calculations, due to the difficulty in calculating one-loop
corrections to processes involving three or more final state particles. Spectacular
developments in on-shell methods over the last six years have made these calcula-
tions feasible, allowing highly accurate predictions for final state observables at the
Tevatron and LHC.

A particular realisation of on-shell methods, generalised unitarity, is used to com-
pute the NLO QCD cross-sections and distributions for two processes: the hadropro-
duction of W+W+jj, and the hadroproduction of W+W−jj. The NLO corrections
to both processes serve to reduce the scale dependence of the results significantly,
while having a moderate effect on the central scale choice cross-sections, and leaving
the shapes of the kinematic distributions mostly unchanged. Additionally, the gluon
fusion contribution to the next-to-next-to-leading order (NNLO) QCD corrections to
W+W−j productions are studied. These contributions are found to be highly depen-
dent on the kinematic cuts used. For cuts used in Higgs searches, the gluon fusion
effect can be as large as the NLO scale uncertainty, and should not be neglected.
All of the higher-order QCD corrections increase the accuracy and reliability of the
theoretical predictions at hadronic colliders.

ii



Contents

1 Introduction 1

1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 QCD Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Renormalisation and running coupling . . . . . . . . . . . . . 7
1.2.3 Parton distributions . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Electroweak symmetry breaking . . . . . . . . . . . . . . . . . . . . . 9

2 Next-to-leading Order Calculations 11

2.1 Perturbative calculation of cross-sections . . . . . . . . . . . . . . . . 11
2.2 Subtraction method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Virtual amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 One-Loop Amplitudes 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Dimensionality of the amplitude . . . . . . . . . . . . . . . . . . . . . 23
3.3 Vermaseren-Van Neerven Basis . . . . . . . . . . . . . . . . . . . . . 26
3.4 Generalised Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Performing the integration . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Tree-Level Amplitudes 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Higher-dimensional polarisations . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Gluonic polarisations . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Fermionic polarisations . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Electroweak bosons . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Berends-Giele recursion relations . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Currents with no electroweak bosons . . . . . . . . . . . . . . 50
4.3.2 Currents with one electroweak boson . . . . . . . . . . . . . . 59
4.3.3 Currents with two electroweak bosons . . . . . . . . . . . . . . 67

5 Hadroproduction of W+W+jj 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Leading order amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Real radiation amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Virtual amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Checks, stability and running time . . . . . . . . . . . . . . . . . . . 84

iii



5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Hadroproduction of W+W−jj 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Leading order amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Two quark, two gluon amplitudes . . . . . . . . . . . . . . . . 97
6.2.2 Four quark amplitudes . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Real radiation amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Two quark, two gluon amplitudes . . . . . . . . . . . . . . . . 102
6.3.2 Four quark amplitudes . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Virtual amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4.1 Two quark, two gluon amplitudes . . . . . . . . . . . . . . . . 105
6.4.2 Four quark amplitudes . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Checks, stability and running time . . . . . . . . . . . . . . . . . . . 114
6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6.1 Results at the Tevatron . . . . . . . . . . . . . . . . . . . . . 115
6.6.2 Results at the LHC . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Hadroproduction of W+W−j through a Fermion Loop 125

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Virtual amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3 Checks, stability and running time . . . . . . . . . . . . . . . . . . . 131
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Summary and Outlook 138

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 141

iv



Chapter 1

Introduction

1.1 Motivation and background

Our current understanding of elementary particle physics is described by the Standard
Model (SM). This posits two types of fermions: quarks and leptons, each existing in
three generations with two particles per generation. Quarks are charged under an
SU(Nc) colour symmetry, with Nc = 3, and their interactions with the gauge bosons
of this symmetry – gluons – are governed by quantum chromodynamics (QCD), the
theory of the strong force. All fermions are charged under an SU(2)×U(1) symmetry,
which is spontaneously broken by the Higgs mechanism, leading to a massless photon
and massive W - and Z-bosons. The former transmits the electromagnetic interac-
tion, experienced by quarks and charged leptons, while the latter transmits the weak
interaction, which all fermions experience. The Higgs mechanism also gives masses
to the fermions, as well as giving rise to a scalar Higgs boson. These theories are
discussed in (slightly) more detail in sections 1.2 and 1.3. The fourth force, gravity,
is not understood at the quantum level and is therefore not included in the SM; at
collider energies, this force is negligible.

The SM has been confirmed by numerous experimental tests over the years. The fi-
nal piece of the puzzle was the Higgs boson. Experiments at both the Tevatron proton-
antiproton collider at Fermilab and the LEP electron-positron collider at CERN were
inconclusive: no evidence of a Higgs was observed, but fairly stringent exclusion lim-
its were placed on its mass [1,2]. The recent discovery by the Large Hadron Collider
(LHC) of a boson “consistent with the Standard Model Higgs boson” in the mass
range mH = 124-127 GeV [3, 4] completes the experimental observation of all SM
particles. Notwithstanding this groundbreaking discovery, until the couplings of the
new particle to the SM fermions and electroweak gauge bosons are measured, it is
not possible to say whether it is the simplest (SM) Higgs mechanism that breaks
electroweak symmetry, or whether some New Physics is at play1. The remainder of
the current LHC run, and more importantly, the higher-energy run beginning in 2014,
will give further insight into its properties. The era of Higgs phenomenology is just
beginning.

The discovery of the scalar Higgs boson also intensifies the so-called hierarchy
problem, essentially a statement that electroweak symmetry should naturally be bro-

1Hereafter, unless otherwise indicated, “Higgs boson” refers to the SM Higgs boson.
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ken at the GUT scale, rather than at a scale some 12 orders of magnitude lower.
This, together with several other unanswered questions – including the presence of
dark matter, the strong CP -problem, and the non-zero masses of neutrinos – suggests
that the Standard Model is a low-energy effective theory of some more fundamental
higher-energy theory. Foremost among these Beyond the Standard Model (BSM) the-
ories is supersymmetry (SUSY), which is based on the idea of an additional space-time
symmetry present at high energies, which is broken at SM energies O(0.1 − 1 TeV).
Finding evidence of this or other BSM theories is another goal of the LHC. To date,
no evidence of BSM physics has been observed, although there are some tensions
between experimental results and Standard Model predictions (e.g. the anomalous
magnetic moment of the muon [5] and the top asymmetry [6]).
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Figure 1.1: Branching ratios of various Higgs decay modes as a function of Higgs mass. The
figure is taken from ref. [7].

Figure 1.1 shows the branching ratios of the various decay modes of the Higgs
boson. A full mass reconstruction is possible in theH → γγ andH → ZZ → l+1 l

−
1 l

+
2 l

−
2

channels. This allowed these channels to drive the discovery of the Higgs [3,4], despite
their small branching ratios for a Higgs mass mH ≃ 125 GeV. In the H → WW
mode, the subsequent leptonic decay of the W -bosons, W → lν, gives the cleanest
experimental signal. The final state neutrinos cannot be detected, although their
presence can be inferred from the missing energy they carry. This means that a mass
reconstruction is not possible in this channel. However, it is still an important channel,
for two main reasons. First, its branching ratio is large. The only channel with a
larger branching ratio is H → bb̄, which suffers from a large QCD background. There
are also experimental difficulties related to the identification of b-quarks2. Second,
the decay to a W -pair gives insight into the relationship between the Higgs boson and
the electroweak bosons, which is important in order to establish whether the Higgs is
SM-like or not.

2These obstacles may be circumvented by the use of jet decomposition in boosted Higgs produc-
tion in association with an electroweak boson [8].
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In order to investigate the properties of the Higgs boson, or to find any evidence
of New Physics, it is important to have an accurate theoretical description of both the
signal and background processes. At hadron colliders, the effects of the strong force
are important. At collider energies, for processes involving the production of hard jets
and/or massive electroweak bosons or other heavy particles, the strong coupling is
small and the factorisation theorem allows observables to be calculated order-by-order
in perturbative QCD (pQCD). This will be discussed in more detail in section 2.1. As
can be seen in figure 1.2, comparison of these perturbative expansions with the data
from Tevatron reveals that a leading-order (LO) description is often not sufficient:
next-to-leading order (NLO) calculations3 are needed [9]. Furthermore, two scales are
present in QCD calculations: a renormalisation scale µR and a factorisation scale µF

(see section 1.2). An observable calculated to all orders in pQCD is independent of
these scales, but truncating the pQCD expansion leads to an unphysical dependence
on these scales. This dependence is far smaller at NLO in pQCD than at LO, enabling
a more reliable result to be obtained.

Figure 1.2: Comparison of cross-sections of W - and Z-boson production observed at
the Tevatron (data points ) to leading-order and next-to-leading order pQCD predictions
(shaded regions). The figure is taken from ref. [9]

Higgs signals are binned according to the number of jets produced in association
with the signal. The background processes in the n-jet channel can then be identified.
The results4 for the 0-jet bin have been calculated to NLO in QCD [11–13] and to next-
to-next-to-leading order (NNLO) in the limit of an infinitely heavy top quark [14–16].
The NLO corrections to H + j production are known [17–19]. Higgs production in
association with two jets can occur through either gluon fusion (GF) or weak boson
fusion (WBF). The cross-sections to NLO for both production mechanisms have been
calculated [20–22]. These calculations have been implemented in several Monte Carlo
parton-level programs, such as MCFM [23–25], HAWK [26,27] and VBFNLO [28]. Interface
to parton showering programs such as PYTHIA [29] or HERWIG++ [30] are also provided
through the POWHEG [31–33] and MC@NLO programs [34].

The hadroproduction of W+W− with 0, 1 or 2 jets is an irreducible background
to Higgs processes in the H → W+W− decay channel. This background without

3Unless otherwise stated, LO, NLO and NNLO refer to the expansion in pQCD throughout this
work.

4For a review, see the LHC Higgs Cross Section Working Group reports [7, 10] and references
therein.
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associated jets is known to NLO [35–38], and has been implemented in MCFM [39],
POWHEG [40], and MC@NLO [41]. The important gluon fusion contribution to the NNLO
cross-section is also known [42, 43]. The production of W+W− + j is known to
NLO [44–46]. Prior to the work reported in this thesis, the production with two
associated jets was not known, nor had the gluon fusion process been studied for
W -pair production in association with jets.

Computations of the signal, and more notably, the background processes to NLO
in QCD are hampered by the difficulty of computing one-loop corrections to processes
with three or more final state particles. Indeed, until 2006, no 2 → 4 particle process
was known to NLO. The situation has improved dramatically during the intervening
six years. Improvements [47–49] to the Feynman diagram-based Passarino-Veltman
reduction [50] allowed several 2 → 4 processes to be computed to NLO using these
methods [51–54]. More importantly, a revolution in the application of unitarity to
one-loop amplitudes [55–63] opened the floodgates, and to date all the 2 → 4 NLO
processes published in the “Experimentalists’ Wishlists” [64–66] have been calculated
[67–74,74–82] (for a detailed breakdown, see ref. [83]). These methods rely heavily on
the colour-ordering of external particles. The work reported in this thesis represents
their first application to processes involving more than one colour-neutral external
particle.

This thesis will report on NLO calculations of the hadroproduction of both same-
sign W+W+ [77] and opposite sign W+W− [82] production in association with two
jets, as well as the calculation of the gluon fusion contribution to the NNLO de-
scription of W+W− + j [84]. Virtual amplitudes are calculated using the Ossola-
Papadoupoulos-Pittau (OPP) subtraction procedure [57] with generalisedD-dimensional
unitarity [61–63] (for a review, see ref. [85]). These methods allow one-loop ampli-
tudes to be evaluated through tree-level helicity amplitudes.

The remainder of the thesis is organised as follows. The next two sections of
the Introduction provide a brief summary of QCD and electroweak theory (including
electroweak symmetry breaking through the Higgs mechanism). The basics of com-
puting observables to NLO is discussed in chapter 2. A detailed discussion of the
methods used to calculate one-loop amplitudes follows in chapter 3. The evaluation
of the tree-level amplitudes that are used in these methods is discussed in chapter
4. The computation of the hadroproduction of W+W+jj and W+W−jj to NLO is
reported in chapters 5 and 6. In chapter 7, the computation of the gluon-induced
NNLO contribution to W+W−j is discussed. I conclude in chapter 8.

As a final note, the work discussed in this thesis was done in collaboration with
T. Melia, K. Melnikov, M. Schulze and G. Zanderighi, and reported in refs. [77,82,84].
It is not straightforward to disentangle who was responsible for what part of the
work. The generalised unitarity framework had been implemented previously. In
the case of refs. [77, 82] this was embedded in MCFM and used for the study of W +
3j [70, 86, 87]. The implementation in the private code TOPAZ, used in top-quark
phenomenology [88–92], was used for ref. [84]. My contribution to the collaboration
was focused on computing the leading-order and real radiation matrix elements, as
well as the primitive amplitudes, especially for the W+W+jj process and the four-
quark W+W−jj sub-processes. To do so, I constructed most of the Berends-Giele
currents involving two electroweak bosons. I also computed the fermion loop primitive
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amplitudes used in chapter 7, modifying TOPAZ extensively in the process. I had little
to do with the computation of the subtraction dipoles or integrated dipoles. I have
tried to reflect this in the emphasis placed on the various sections throughout.
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1.2 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the quantum field theory describing the strong
force. It is based on a local SU(Nc) symmetry, with Nc = 3 colours. The fundamental
(antifundamental) representations of this group are quarks (antiquarks); the adjoint
representation are gluons. It has both infrared and ultraviolet divergences, but is fully
renormalisable through a redefinition of the wave functions, strong coupling constant
gs, and the quark mass m. The renormalised coupling is a decreasing function of
energy – this leads to the famed asymptotic freedom, allowing perturbative QCD
(pQCD) to be applied at sufficiently high energies.

1.2.1 QCD Lagrangian

The QCD Lagrangian is [93]

LQCD = Lgl + Lquark + LFP + Lgh. (1.2.1)

The first term describes the purely gluonic part of the Lagrangian

Lgl = −1

4
Gaµν(x)Ga

µν(x), (1.2.2)

with
Ga

µν(x) = ∂µB
a
ν (x)− ∂νB

a
µ(x) + gsf

abcBb
µ(x)B

c
ν(x), (1.2.3)

where Roman superscripts a, b, c are indices for the adjoint representation of the
SU(3) colour group, fabc are the structure constants of this group, B are the gluonic
fields, and gs is the strong coupling constant. Writing Lgl in full

Lgl = −1

4

(

(∂µB
a
ν −∂νB

a
µ)

2+4gsf
abc(∂µB

a
ν )B

bµBcν+g2sf
abcfadeBbµBcνBd

µB
e
ν

)

. (1.2.4)

The second and third terms imply three- and four-point self-interactions between
gluons, and are a result of the non-Abelian nature of the SU(3) group.

The second term of LQCD describes the coupling between quarks and gluons

Lquark =
∑

flav

q̄α(i /Dαβ −mδαβ)qβ (1.2.5)

where the sum runs over the six flavours of quarks, flav = {u, d, c, s, t, b}, and the
covariant derivative is

Dµ
αβ = ∂µδαβ − igsB

aµtaαβ . (1.2.6)

Greek subscripts α, β are indices for the fundamental representation 3 of SU(3), and
ta is a generator of this representation. The antifundamental representation 3̄ has
generators −ta. The non-Abelian nature of SU(3) may be expressed through the
relationship between the generators of the fundamental and adjoint representations

[ta, tb] = ifabctc ⇔ fabc = −iTr
(

[ta, tb]tc
)

, (1.2.7)

with the normalisation Tr
(

tatb) = δab used throughout this work.
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The Fadeev-Popov and ghost Lagrangians are a result of quantising the SU(3)
Lagrangian. The Fadeev-Popov quantisation procedure circumvents singularities that
appear during quantisation, originating from the gauge invariance of the gluons. This
leaves a term

LFP = − 1

2ξ
(∂µBa

µ)
2, (1.2.8)

with ξ a parameter which reflects the gauge choice. This procedure generates addi-
tional terms in the Lagrangian, which can be expressed by ghost fields c in the adjoint
of SU(3). These fields are Lorentz scalars yet obey anticommutation relations; they
therefore have the “wrong” spin statistics and are unphysical. The Lagrangian is

Lgh = c̄a
(

−∂µ(∂µδ
ac − gsf

abcBb
µ)
)

cc. (1.2.9)

The cubic and quartic gluonic terms in (1.2.4) allow non-trivial gluonic scattering. In
the absence of ghost fields, these scattering amplitudes do not satisfy unitarity.

1.2.2 Renormalisation and running coupling

At next-to-leading order in an expansion in the strong coupling constant, quantum
chromodynamics contains ultraviolet divergences in loop diagrams. These can be
renormalised by writing the QCD Lagrangian as a sum of a renormalised Lagrangian
and a counter-term Lagrangian, which absorbs renormalisations of the fermion, gauge,
and ghost fields, and the quark mass m and strong coupling gs. One result of this
procedure is that the mass and couplings become functions of an arbitrary energy
scale µ introduced by the renormalisation procedure, m = m(µ) and gs = gs(µ).

Neglecting masses, an observable R at an energy scale Q2 can only depend on Q2

µ2 ,

and the coupling αs ≡ g2s
4π
, R = R(Q

2

µ2 , αs(µ
2)) [94]. The observable R cannot be

dependent on µ2:

µ2 d

dµ2
R
(Q2

µ2
, αs(µ

2)
)

=
(

µ2 ∂

∂µ2
+ µ2∂αs(µ

2)

∂µ2

∂

∂αs

)

R = 0. (1.2.10)

The beta-function is defined as β(αs) = µ2 ∂αs

∂µ2 , and I define t = log Q2

µ2 . Then equation

(1.2.10) can be rewritten as

− ∂R(et, αs)

∂t
+ β(αs)

∂R(et, αs)

∂αs
= 0, (1.2.11)

and the beta function as

β =
∂αs

∂t
. (1.2.12)

Then

t =

∫ αs(Q2)

αs(µ2)

du

β(u)
, (1.2.13)

through which the running coupling αs(Q
2) is defined. A solution to equation (1.2.11)

is given by R(1, αs(Q
2)), and this can be calculated at any other value of t and αs

7



using equation (1.2.13). The price for the independence of R on the arbitrary scale
µ2 is that the coupling αs is now dependent on the physical scale Q2.

This dependence of the coupling on the physical scale Q2 can be expressed through
the beta function β(αs) = µ2 ∂αs

∂µ2 , which can be calculated perturbatively. In QCD,
including amplitudes to one loop in pQCD, the beta function is

β(αs) = −11Nc − 2nf

12π
α2
s, (1.2.14)

where Nc = 3 is the number of colours, and nf is the number of massless flavours.
Since nf ≤ 6, β < 0, meaning that the strength of the strong coupling decreases as the
energy scale of the dynamics increases. This means that pQCD can be meaningfully
applied at sufficiently large energies. It is found that the strong coupling becomes
large at hadronic energy scales, so that the lowest energy at which pQCD can be
applied is ΛQCD ∼ 1 GeV. Energy scales in collider physics are typically 100 − 1000
GeV, so pQCD is fully applicable. This is borne out by the value of αs(Q

2 = M2
Z) ≃

0.1. The scale Q is often called the renormalisation scale µR.

1.2.3 Parton distributions

While it is true that pQCD is applicable to partonic scattering in hadron collisions,
there are also low-energy (soft) effects coming from the confinement of the partons
within the hadrons (typically protons and antiprotons). The behaviour of the partons
within the hadrons – specifically, their momentum distribution – is parametrised by
parton distributions.

The partons are considered to be moving in the same direction as the hadrons,
with negligible momentum transverse to this direction. Suppose the hadrons have
known four-momenta P1 and P2, and the partons have unknown four-momenta p1
and p2. The parton distribution functions (PDFs) fa/A(xi, µ

2
F ) represent the number

density of partons of type a in a hadron of type A which contain momentum fraction
xi = pi/Pi at the factorisation scale µF . The factorisation theorem allows these soft
effects to be treated separately from the hard partonic scattering, and the hadronic
cross-section is written as

σ(P1, P2) =
∑

a,b

∫

dx1dx2fa/A(x1, µ
2
F )fb/B(x2, µ

2
F )σ̂ab(p1, p2, αs(µ

2
R), Q

2/µ2
R, Q

2/µ2
F ),

(1.2.15)
where σ̂a,b is the partonic cross-section, evaluated using pQCD at a scale Q. The
factorisation scale forms the boundary between hard and soft processes, with µF ∼
Q. The cross-sections to all orders is independent of both the factorisation and
renormalisation scales, but truncating the perturbative expansion introduces a scale
dependence. Calculating the cross-section to higher orders in pQCD reduces this
dependence. Often, the factorisation and renormalisation scales are set equal to each
other and to the scale of the process, µF = µR = Q.

The PDFs are derived primarily from deep inelastic scattering (DIS) data, and
are then evolved to the factorisation scale of the hadronic collision through the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [95–97]. Several dif-
ferent PDF fits are available: amongst the most frequently used are the MSTW [98],
NNPDF [99] and CT (formerly CTEQ) [100] distributions.
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1.3 Electroweak symmetry breaking

The quantum field theory describing the electromagnetic and weak forces postulates
an SU(2)× U(1) symmetry, mediated by massless gauge bosons Aa

µ (a = 1, 2, 3) and
Bµ, and with couplings g and g′ [101–103]. This brief discussion follows ref. [93]. The
symmetry is broken by a complex scalar Higgs field φ [104–107], which is charged
under the SU(2)× U(1) group, and has a potential

V (φ) = −µ2|φ|2 + λ

2
|φ|4. (1.3.1)

The minimum of this potential is not at φ = 0, and as a result the Higgs field acquires
a vacuum expectation value (vev) of

< φ >=
1√
2

(

0
v

)

. (1.3.2)

This breaks the SU(2)×U(1) and realigns the gauge boson fields, giving rise to three
massive gauge bosons

W±
µ =

1√
2

(

A1
µ ∓ iA2

µ

)

,

Zµ =
1

√

g2 + g′2

(

gA3
µ − g′Bµ

)

,
(1.3.3)

with masses mW = gv
2
and mZ = v

2

√

g2 + g′2. The final gauge boson is massless

Aµ =
1

√

g2 + g′2

(

g′A3
µ + gBµ

)

. (1.3.4)

In this manner, three massive weak bosons, theW±− and Z-bosons, and one massless
photon, are described. The coupling of a fermion to the photon is expressed through
its electromagnetic charge Q = T 3+Y , where Y is the hypercharge under the original
U(1) symmetry, and T 3 is a generator of the SU(2) symmetry. The mixing of the
original SU(2)×U(1) fields into the weak bosons and photon is parametrised through
the weak mixing angle θw, with

cos θw =
g

√

g2 + g′2
. (1.3.5)

The coupling strength of the photon is

e =
gg′

√

g2 + g′2
(1.3.6)

and is related to the weak coupling strength by e = gw sin θw. This also implies a
relation between the weak mixing angle and the masses of the W - and Z-boson

cos θw =
mW

mZ
. (1.3.7)
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The Lagrangian describing the interactions of the electroweak bosons to the fermions
is

LEW = gw

(

W+
µ Jµ

W+ +W−
µ Jµ

W− + Z0
µJ

µ
Z

)

+ eAµJ
µ
EM, (1.3.8)

with currents

Jµ
W+ =

1√
2

(

ν̄Lγ
µeL + ūLγ

µdL

)

Jµ
W− =

1√
2

(

ēLγ
µνL + d̄Lγ

µuL

)

Jµ
Z =

1

cos θw

(

ν̄Lγ
µT 3

ν νL + ēLγ
µ
(

−Qe sin
2 θw + T 3

e

)

eL

+ ēRγ
µ
(

−Qe sin
2 θw

)

eR + ūLγ
µ
(

−Qu sin
2 θw + T 3

u

)

uL

+ ūRγ
µ
(

−Qu sin
2 θw

)

uR + d̄Lγ
µ
(

−Qd sin
2 θw + T 3

d

)

dL

+ d̄Rγ
µ
(

−Qd sin
2 θw

)

dR

)

Jµ
EM =ēγµ(Qe)e+ ūγµ(Qu)u+ d̄γµ(Qd)d.

(1.3.9)

The electromagnetic charges in the above are

Qe = −1; Qu =
2

3
; Qd = −1

3
(1.3.10)

and the T 3 are

T 3
e = T 3

d = −1

2
; T 3

ν = T 3
u =

1

2
. (1.3.11)

The interactions of theW - and Z-bosons violate parity maximally, with theW -bosons
coupling only to left-handed fermions.

The non-Abelian nature of the SU(2) symmetry allows couplings between the
gauge bosons. In the basis of massless bosons Aa

µ and Bµ, this can be expressed
through the Yang-Mills Lagrangian [108]

LYM = −1

4

(

∂µA
a
ν − ∂νA

a
µ + gǫabcAb

µA
c
ν

)2

− 1

4

(

∂µBν − ∂νBµ

)2

, (1.3.12)

leading to both three- and four-point interactions. For the purposes of this work, only
the three-point interactions will be necessary. In the basis of the W -bosons, Z-bosons
and photons, these three-point interactions can be expressed through

LWWV =igw

{[

(

∂µW
+
ν − ∂νW

+
µ

)

W−µ −
(

∂µW
−
ν − ∂νW

−
µ

)

W+µ
]

×
[

cos θwZ
ν + sin θwA

ν
]

+
1

2

[

cos θw
(

∂µZν − ∂νZµ

)

+ sin θw
(

∂µAν − ∂νAµ

)

]

×
[

W+µW−ν −W−µW+ν
]}

.

(1.3.13)
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Chapter 2

Next-to-leading Order Calculations

2.1 Perturbative calculation of cross-sections

At hadronic colliders, the energies are large enough for asymptotic freedom to be
manifest, meaning the strong coupling αs is small. The matrix elements can then
be calculated in perturbative QCD (pQCD). Suppose that N final state particles of
momenta pi = (Ei,pi), i = 1, ..., N , are created in the collision of two initial state
partons of momenta k1 and k2, with n of final state particles having colour. The
cross-section can be expanded as

σ = αn
s

(

σ0 + αs

(

σR + σV
)

+O(α2
s)

)

, (2.1.1)

where σ0 is the leading-order (LO) cross-section, and σR and σV are the real and vir-
tual contributions to the next-to-leading order (NLO) correction. These are obtained
from the matrix elements by convoluting with the PDFs and integrating over phase
space:

σ0 =

∫

N

dσ0

=

∫

dΦN

∑

hel

|M0(k1, k2, p1, ..., pN)|2J (N)(k1, k2; p1, ..., pN)

σV =

∫

N

dσV

=

∫

dΦN

∑

hel

2 Real
(

M0(k1, k2, p1, ..., pN)MV∗(k1, k2, p1, ..., pN)
)

× J (N)(k1, k2; p1, ..., pN)

σR =

∫

N+1

dσR

=

∫

dΦN+1

∑

hel

|MR(k1, k2, p1, ..., pN+1)|2J (N+1)(k1, k2; p1, ..., pN+1)

(2.1.2)

where M0 is the Born matrix element, MR is the matrix element due to the real
radiation (brehmsstrahlung) of a coloured particle, and MV is the one-loop virtual
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matrix element. The sum is over all allowed helicities of the external particles, and
the integration over phase space and momentum fractions is [93, 94]

∫

dΦN =
∑

a,b

∫

dx1dx2fa/A(x1, µF )fb/B(x2, µF )
1

4|k0
2k

z
1 − k0

1k
z
2|
×

N
∏

i=1

∫

d4pi
(2π)4

θ(Ei)δ(p
2
i −m2

i )(2π)
4δ4

(

N
∑

i=1

pi − k1 − k2

)

,

(2.1.3)

where the sum is over all parton types a, b of the colliding hadrons A and B, and
the product is over all final state particles. Calculations are usually performed in the
centre-of-mass frame or a boost-related frame, in which the boost-invariant denomi-
nator 4|k0

2k
z
1−k0

1k
z
2| = 2E2

CM . The integrations over the parton distribution functions
and over phase space are done numerically, using a Monte Carlo method. There are
4N integration variables from the four momenta, and another two from the parton
momentum fractions, and N on-shell constraints and 4 energy-momentum conserva-
tion constraints, meaning that the integration is over 3N − 2 random variables.

The function J in equation (2.1.2) provides an infrared safe definition of the jet
observable in terms of the N final state partons. For example, J may define an inclu-
sive cross-section or a differential cross-section, with an appropriate definition of the
jets. Irrespective of the exact form of J , its infrared safety property is crucial. This
property means that the jet observable should not be changed by the addition of par-
tons in the final state which have either vanishing four-momentum or are collinear to
another parton. Infrared safety is guaranteed if the jet function satisfies the following
criteria:

lim
pi→0

J (N+1)(k1, k2; p1, ..., pi, ..., pN+1) = J (N)(k1, k2; p1, ..., pN+1)

lim
pi||pj

J (N+1)(k1, k2; p1, ..., pj, ..., pi, ..., pN+1) = J (N)(k1, k2; p1, ..., pj + pi, ..., pN+1)

lim
pi→(1−x)k1

J (N+1)(k1, k2; p1, ..., pi, ..., pN+1) = J (N)(xk1, k2; p1, ..., pN+1)

lim
pi→(1−x)k2

J (N+1)(k1, k2; p1, ..., pi, ..., pN+1) = J (N)(k1, xk2; p1, ..., pN+1)

lim
pi.pj→0

J (N)(k1, k2; p1, ..., pj, ..., pi, ..., pN) = 0

lim
km.pj→0

J (N)(k1, k2; p1, ..., pj, ..., pi, ..., pN) = 0; m = 1, 2.

(2.1.4)

Jets are usually defined using either the kt [109,110] or anti-kt [111] algorithms, which
are both infrared safe. It is also worthwhile noting that additional kinematic cuts,
for example on the transverse momentum of the jets, may be imposed on equation
(2.1.2).

The cross-section of equation (2.1.1) is finite order-by-order. This means that the
leading-order cross-section is always finite. However, divergences are present in the
real and virtual matrix elements. In the real matrix element, these are infrared (IR)
divergences due to the emission of a soft or collinear particle. In the virtual matrix
element, IR divergences appear from the transfer of a soft or collinear virtual particle,

12



and ultraviolet (UV) divergences are also present. Both of these can be regulated by
dimensional regularisation [112, 113], in which the momenta of the internal particles
is continued to D = 4 − 2ǫ dimensions. The limit ǫ → 0 is then taken, and the UV
divergences emerge as single 1/ǫ poles, while the IR divergences appear as double
1/ǫ2 and single 1/ǫ poles. In a renormalisable theory like QCD, the UV divergences
can be absorbed into the bare (unobservable) masses, couplings and wave functions.
This renormalisation procedure results in a counterterm, which in the MS scheme is
proportional to the Born matrix element. For massless amplitudes, the counterterm
is [114]:

MUV = − N(4π)ǫ

2ǫΓ(1− ǫ)

(

gs/(4π)
)2
β0M0, (2.1.5)

where Γ is the Euler gamma function, and β0 is the first term of the β-function (see
section 1.2.2), β0 = (11Nc − 2Nf)/3. The regularised IR poles in the real and virtual
contributions will cancel after integration over phase space, leaving a finite next-to-
leading order cross-section. However, since the integration is performed numerically,
this cancellation is not straightforward, and will be discussed in the next section.
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2.2 Subtraction method

In the previous section, I mentioned that the regularised infrared (IR) poles origi-
nating from the real cross-section should cancel those coming from the virtual cross-
section. However, it is not possible to numerically integrate an expression which
diverges in some subspace. Therefore, it is preferable to cancel these divergences
prior to integration. The difficulty in doing so is that the virtual cross-section in-
volves an integration over an N -particle phase space, while the real cross-section has
an integration over an (N + 1)-particle phase space. To solve this problem, a sub-
traction scheme [115] is employed, defining a counterterm dσA with the following
two properties: it has the same singular structure as dσR, and it can be integrated
analytically over the one-particle phase space associated with the singularities. Then

σR + σV =

∫

N+1

(

dσR − dσA
)

+

∫

N

(

dσV +

∫

sing

dσA
)

, (2.2.1)

where the integral
∫

sing
is over the phase subspace that leads to soft and collinear

divergences. The first property of the counterterm ensures that the divergences cancel
in the integrand of the first integral, so that the numerical integration over (N + 1)-
particle phase space can be performed with no trouble. The second property of the
counterterm ensures that the poles of

∫

sing
dσA can be obtained and then cancelled

with the poles of dσV in the integrand of the second term, allowing the numerical
integration over the N -particle phase space to be performed.

The problem of finding the counterterm dσA for a general process was solved by
Catani and Seymour [116, 117], and later extended to massive partons [118]1. Here
I shall only consider singularities originating from final state partons which become
soft, or which are emitted collinear to another final state parton. This is sufficient for
a brief outline of the idea. Including initial state singularities is a nontrivial extension
discussed in ref. [117]. In the soft and collinear regions, the (N+1)-particle amplitude
MR can be written in terms of an N -particle amplitude MN , and the singular part
of |MR|2 can be expressed as a dipole Dij,k:

Dij,k(p1, ..., pN+1) =
−1

2pi.pj
< cRn+1...c

R
k̃
...cR

ĩj
...cR1 |

Tk̃.Tĩj

T2
ĩj

|cR1 ...cRĩj ...cRk̃ ...c
R
n+1 >

M∗
N(p1, ..., pĩj , ..., pk̃, ..., pN+1)Vij,kMN(p1, ..., pĩj, ..., pk̃, ..., pN+1).

(2.2.2)

In order to construct MN , the partons i and j are replaced by a single parton ĩj
(called the emitter), and the parton k with k̃ (called the spectator). The spectator
k̃ has the same quantum numbers as k, while the quantum numbers of parton ĩj are
defined according to the splitting ĩj → i + j. Thus, as an example, if i is a quark
and j a gluon, then ĩj must be a quark of the same flavour as i. The operators
Ti are colour matrices: the generator of the fundamental representation taαβ for an
emitting quark and the generator of the adjoint representation ifa

bc for an emitting

1Subtraction methods using different formalisms are also widely used, such as FKS subtraction
[119, 120] and antenna methods [121, 122].
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gluon. These act on the colour state of the amplitude, written as |cR1 ...cRĩj ...cRk̃ ...c
R
n+1 >,

with each coloured particle contributing a colour matrix cRi . These are also generators
of either the fundamental, antifundamental or adjoint representations. There is no
colour dependence in MN . The operator V acts on the spin and momentum of the
emitter. The momenta of the emitter and spectator are

pĩj =pi + pj −
yij,k

1− yij,k
pk

pk̃ =
1

1− yij,k
pk

(2.2.3)

with
yij,k =

pipj
pipj + pjpk + pipk

. (2.2.4)

The emitter and spectator remain massless, p2
ĩj

= p2
k̃
= 0, and momentum is con-

served, pĩj + pk̃ = pi + pj + pk. This means that double counting is avoided if one
parton becomes both soft and collinear to another parton. A pointwise cancellation
of singularities is therefore possible. The excess momentum caused by the splitting
ĩj → i + j is absorbed by one particle, the spectator. This is in contrast to the
Nagy-Soper dipole method [123,124], where the excess momentum is absorbed by all
particles not involved in the splitting.

The dipole formula equation (2.2.2) reproduces the soft-gluon and Altarelli-Parisi
collinear factorisation [116], but is also defined in non-singular regions of phase space.
The subtraction term dσA is defined as

dσA = dΦN+1

∑

i,j

∑

k 6=i,j

Dij,kJ (N)(p1, ..., pĩj , ..., pk̃, ..., pN+1). (2.2.5)

In the singular regions, the (N + 1)-particle phase space is the same as the dipole
phase space, so that

J (N+1)(p1, ..., pi, ..., pj, ..., pk, ..., pN+1) = J (N)(p1, ..., pĩj, ..., pk̃, ..., pN+1). (2.2.6)

Furthermore, in these regions, Dij,k has the same behaviour as |MR|2 by definition.
It is clear then that dσR − dσA is finite. In fact, equation (2.2.6) ensures that this
cancellation occurs for any infrared safe observable.

Turning now to the second term of equation (2.2.1), the (N + 1)-particle phase
space factorises as

dΦN+1 = dΦN
dDpi

(2π)D−1
δ+(p

2
i )Θ(1− zi)Θ(1− yij,k)

(1− yij,k)
D−3

1− zi
, (2.2.7)

with dΦN the N -particle dipole phase space and zi =
pipk̃
pĩjpk̃

. With this factorisation,

the integration of the dipole counterterm over the singular regions of phase space can
be performed analytically in D-dimensions, with the result

∫

dΦN+1dσ
A =

∫

dΦN

∫

sing

dσA

=

∫

dΦNM0∗I(ǫ)M0J (p1, ..., pN).

(2.2.8)
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Thus the singularities of the integrated dipole can be expressed in terms of the Born
matrix element squared, with an operator in colour space

I(p1, ..., pm; ǫ) = −αs

2π

1

Γ(1− ǫ)

∑

i

T−2
i Si(ǫ)

∑

k 6=i

Ti.Tk

( 4πµ2

2pi.pk

)ǫ

, (2.2.9)

with

Si(ǫ) = T2
i

( 1

ǫ2
− π3

3

)

+
γi
ǫ
+ γi +Ki +O(ǫ) (2.2.10)

and

γq = γq̄ = 3
2
CF γg = 11

6
Nc − 1

3
TRNf

Kq = Kq̄ = CF

(

7
2
− π2

6

)

Kg = Nc

(

67
18

− π2

6

)

− 5
9
TRNf .

(2.2.11)

The colour factors are TR = 1 and CF ≡ N2
c−1
2Nc

. The singularities of the integrated

dipole M0∗I(ǫ)M0 cancel with those from the virtual matrix element squared [116].
The integrand of the second term of equation (2.2.1) is finite, and the integration
over N -particle phase space can be performed. Thus the IR poles in both N - and
(N + 1)-particle phase space can be cancelled prior to integration, and the resulting
finite terms integrated to yield the next-to-leading order cross-section.
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2.3 Virtual amplitudes

The leading-order, real and virtual matrix elements include a dependence on colour
factors. If more than one colour-charged particle is present in the final state, then the
matrix element will contain terms with different permutations of colour factors, even
at tree-level. At one-loop level, the colour structure is even more complicated. For
this reason, it is useful to introduce colour-stripped partial amplitudes [125], which
are functions of the kinematics of the scattering only. The matrix element, at either
tree-level or one-loop, can be expressed as a sum over the partial amplitudes, with
each multiplied by a unique permutation of the colour factors.

Equation (1.2.7) relates the generators of the adjoint representation to the gener-
ators of the fundamental representation

fabc = −iTr
(

[ta, tb]tc
)

. (2.3.1)

Thus all the colour factors in an amplitude – the coefficients of the partial amplitudes
– can be written in terms of fundamental generators ta. As a simple example, the
tree-level amplitude involving a quark-antiquark pair and two gluons can be written
in terms of two partial amplitudes A and B:

M0(q̄1, q2, g3, g4) = (ta3ta4 )̄i1i2A+ (ta4ta3 )̄i1i2B. (2.3.2)

The one-loop partial amplitudes can further be decomposed into primitive ampli-

tudes, which have a set ordering of the colour-charged external particles that preserves
SU(Nc) gauge invariance2. Bern, Dixon and Kosower proved [126] that such a de-
composition is possible for every one-loop partial amplitude in the scattering of a
quark and antiquark with n gluons. Partial amplitudes do not have a fixed ordering
of coloured particles and therefore a partial amplitude is usually decomposed into
several primitive amplitudes. Similarly, a primitive amplitude may appear in the
decomposition of multiple partial amplitudes.

The particles circulating in the loop may be only gluons, gluons and quarks, or
only quarks3. The first two are grouped together, and referred to as gluonic primi-
tive amplitudes A1. Amplitudes with only quarks circulating in the loop are called
fermionic primitive amplitudes A[1/2]. These are accompanied by a factor of Nf , the
number of flavours in the loop. Primitive amplitudes for a process involving a quark-
antiquark pair may be further defined as either “left” or “right” oriented, depending
on where the loop is located relative to the fermion line (and irrespective of the type
of particles circulating in the loop). These are indicated by an L or R superscript.
The left and right, fermionic and gluonic virtual amplitudes are illustrated in figure
2.1. Left and right (fermionic and gluonic) primitives can be shown to be separately
SU(Nc) gauge invariant by appealing to a supersymmetric Yang-Mills theory [126].
Furthermore, the sums AL

1 +AR
1 and AL

[1/2]+AR
[1/2] are also gauge invariant under this

symmetry.

2Particles charged under other symmetries, such as SU(2) × U(1) electroweak symmetry, are
not ordered in primitive amplitudes. Similarly, other gauge invariances which may be present in
the theory are not preserved in primitive amplitudes, but will be recovered when the primitives are
recombined to form the full virtual amplitude.

3In ref. [126], a supersymmetric extension of the gauge group is considered, and scalars are also
allowed in the loop. This is not relevant for this work.
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q2

q̄1

g3

gi gi+1

gn

AL
[1](q̄1, g3, ..., gi, q2, gi+1, ..., gn)

gi

g3

q2

q̄1

gn

gi+1

AL
[1/2](q̄1, g3, ..., gi, q2, gi+1, ..., gn)

gi+1

gng3

gi

AR
[1](q̄1, g3, ..., gi, q2, gi+1, ..., gn)

q̄1

q2

q2

q̄1

gi

g3
gn

gi+1

AR
[1/2](q̄1, g3, ..., gi, q2, gi+1, ..., gn)

Figure 2.1: Colour-ordered primitive amplitudes. Gluonic primitive amplitudes are shown
on the top row, with the left oriented amplitude on the left and the right oriented amplitude
on the right. Left and right fermionic primitive amplitudes are shown on the bottom row.

In general, a partial amplitude is related to both left and right, gluonic and
fermionic primitive amplitudes AL

1 , A
R
1 , A

L
[1/2], A

R
[1/2], multiplied by various colour fac-

tors. It is possible to eliminate the dependence on right primitives, as these can be
written as left primitives under the exchange of gluons

AR
[J ](q̄1, g3, g4, ..., gi, q2, gi+1, ..., gn−1, gn) = (−1)nAL

[J ](q̄1, gn, gn−1, ..., gi+1, q2, gi, ..., g4, g3)
(2.3.3)

for J = 1/2, 1, so that the partial amplitude can be written in terms of left gluonic and
fermionic primitive amplitudes. The exact relationship must be determined separately
for each process, and will be discussed in sections 5.4, 6.4 and 7.2.

The residues of the IR single and double poles of the primitive amplitudes AL
1

have a simple expression in terms of the tree-level amplitude A0 with the same colour-
ordering as the primitive. The ratio

R =
1

cΓ

Res
(

A1
L(q̄1, g3, ..., gi, q2, gi+1, ..., gn)

)

A0(q̄1, g3, ..., gi, q2, gi+1, ..., gn)
(2.3.4)

where

cΓ = (4π)ǫ−2Γ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
(2.3.5)

is

R = − 1

ǫ2

( µ2

−sq,i+1

)ǫ

− 1

ǫ2

( µ2

−sq̄,n

)ǫ

− 1

ǫ2

n−1
∑

j=i+1

( µ2

−sj,j+1

)ǫ

= − 2

ǫ2
− 1

ǫ
ln
( µ2

−sq,i+1

)

− 1

ǫ
ln
( µ2

−sq̄,n

)

−
n−1
∑

j=i+1

[

− 1

ǫ2
− 1

ǫ
ln
( µ2

−sj,j+1

)]

(2.3.6)
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if i < n. If i = n, then the ratio is simply

R = − 1

ǫ2

( µ2

−sq,q̄

)ǫ

= − 1

ǫ2
− 1

ǫ
ln
( µ2

−sq,q̄

)

. (2.3.7)

In the above, I have used sij = (pi + pj)
2, sq,i+1 = (pq + pi+1)

2, sq̄,n = (pn + pq̄)
2

and sq,q̄ = (pq + pq̄)
2, and µ is the energy scale introduced by renormalisation. The

logarithm has the usual continuation if the argument is negative

ln
( µ2

−sij

)

= ln
(

| µ2

−sij
|
)

+ iπΘ(sij), (2.3.8)

where Θ is the Heaviside function. The above contribution to the single and double
poles is universal; there is also a constant contribution to the single poles which is
process-dependent. For all the processes considered in this work, these contributions
are given in refs. [114, 126].

The simplicity of the singular structure is one motivation for the use of primi-
tive amplitudes. Another is the compactness of the virtual amplitude when written
in terms of primitives. One can dispense with different permutations of coloured
particles when evaluating a primitive amplitude, since it is colour-ordered. At the
same time, unlike individual Feynman diagrams, primitive amplitudes preserve the
SU(Nc) invariance. In the following chapter, I will discuss a unitarity-based method
for evaluating one-loop amplitudes. While this method is applicable to any one-loop
amplitude, its application to primitive amplitudes allows the use of off-shell recursive
Berends-Giele currents (see section 4.3), making this a very efficient implementation
of the unitarity method.
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Chapter 3

One-Loop Amplitudes

3.1 Introduction

In this chapter, I shall consider the problem of evaluating the one-loop N -particle
scattering amplitude (see figure 3.1) in D-dimensions

AN(p1, p2, ..., pN) =

∫

dDl

(2π)D
AN(p1, p2, ..., pN ; l)

=

∫

dDl

(2π)D
N (p1, p2, ..., pN , J1, J2, ..., JN ; l)

D0D1...DN−1

,

(3.1.1)

where pi are external momenta, and the Ji = Ji(pi) are external polarisation vectors
or spinors. The propagators are given by

Di = (l + qi)
2 −m2

i =
(

l + q0 +
i

∑

j=1

pj

)2

−m2
i , (3.1.2)

where l is the loop momentum, q0 is an arbitrary parametrisation momentum, and
mi is the mass of the off-shell particle. In general, the integral must be performed
in D-dimensions to allow regularisation of the infrared and ultraviolet poles. The
interpolation D = 4 − 2ǫ and the limit ǫ → 0 are eventually taken (see section 3.2).
In a renormalisable field theory, each vertex can contribute at most one factor of
l to the numerator N , and there are at most N vertices at one loop. This means
that the maximum number of times that l can appear explicity in N – called the
rank r of the integral – is N . An integral having n propagators in the denominator
(n ≤ N) is known as an n-point integral, also called a pentagon, box, triangle,
bubble, or tadpole integral for n = 5, 4, 3, 2, 1. Thus I will refer to rank-r n-point
integrals, with r ≤ n ≤ N . As an example, a rank-2 three-point (triangle) integral is

Cµν(l) =
∫

dDl
(2π)D

lµlν

D0D1D2
.

It is possible to write the amplitude in terms of a basis of scalar (i.e. rank-0)
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p1

p2

p3

pN

l + q0

l + q1

l + q2

l + qN−1

Figure 3.1: Diagrammatic representation of a one-loop N -particle scattering amplitude.

integrals

AN(p1, p2, ..., pN) =
∑

[i1|i5]
β5;i1i2i3i4i5(pi)I

D
i1i2i3i4i5

+
∑

[i1|i4]
β4;i1i2i3i4(pi)I

D
i1i2i3i4

+

∑

[i1|i3]
β3;i1i2i3(pi)I

D
i1i2i3

+
∑

[i1|i2]
β2;i1i2(pi)I

D
i1i2

+

∑

i1

β1;i1(pi)I
D
i1 ,

(3.1.3)

where I have used the notation [i1|ik] = 0 ≤ i1 ≤ i2... ≤ ik ≤ N . The coefficients β
of the scalar master integrals are independent of loop momentum l. Equation (3.1.3)
does not need to go beyond five-point scalars, since with the identification D = 4−2ǫ,
every higher-point scalar integral can be written in terms of five-point scalars up to
terms O(ǫ) [127–129] 1 .

The scalar integrals are

IDi1...iM =

∫

dDl

(2π)D
1

Di1 ...DiM

. (3.1.4)

These integrals will be discussed again in section 3.5. For now, it suffices to say that
they are known [130–132], so that the problem of evaluating equation (3.1.1) reduces
to finding the coefficients β in equation (3.1.3).

An early method of finding these coefficients was proposed by Passarino and Velt-
man [50]. A rank-r n-point integral is expanded in terms of external momenta pi and
the metric tensor gµν . By multiplying both sides of these equations with external
momenta, a system of linear equations is created, which are solved to yield the coef-
ficients in the expansion of the integral. This result is recursive, and a rank-r n-point
integral is re-expressed in terms of a rank-(r − 1) n-point integral and (n− 1)-point
integrals with rank ≤ r − 1. In this manner, any integral can be reduced to a scalar
integral, and the one-loop amplitude evaluated.

1Note that such terms would be important for two-loop calculations.
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This summary does not do justice to the extensive refinement that this method
has undergone since its initial conception [47–49]. Indeed, many cutting-edge compu-
tations are performed using this technique. However, it does have some drawbacks.
First, each tensor integral is generated using Feynman diagrams and the associated
rules. Since the number of Feynman diagrams for an N -particle scattering amplitude
increases faster than N ! [62], this becomes computationally expensive. Moreover, as
has been pointed out several times, e.g. in refs. [61,85], individual Feynman diagrams
do not preserve gauge invariance. This means that there are extensive cancellations
between terms originating from different Feynman diagrams, leading to much simpler
final results. These problems are exacerbated by the Passarino-Veltman reduction,
since the number of terms produced in the reduction of a tensor integral with high
rank can be very large. Second, solving the linear equations produced in the re-
duction procedure involves taking inverses of Gram matrices. These matrices can
become singular for combinations of external momenta that do not correspond to any
physical singularity. While this problem can be circumvented, it further adds to the
computational time.

An alternative approach, which may now arguably be called the standard ap-
proach, is based on the unitarity property of quantum field theory. This property
allows the imaginary part of the amplitude to be calculated from tree-level ampli-
tudes obtained by putting intermediate particles on-shell. The basic idea is known
as Cutkosky rules [133], and methods based on unitarity were advanced mainly by
Bern, Dixon, and Kosower [134–136]. This development accelerated in recent years
due to the discovery by Britto, Cachazo, and Feng [55, 56] that the coefficients of
the scalar integrals in the decomposition of one-loop integrals can be obtained from
tree-level helicity amplitudes admitting complex momenta. These ideas were used by
Forde [58], Badger [59], and Mastrolia [60] using a spinor-helicity formalism [137].
Additionally, Ossola, Papadoupoulos and Pittau developed an algebraic method to
extract the coefficients of the scalar one-loop integrals, known as the OPP subtraction
method [57].

In this chapter, I shall describe an approach advanced by Ellis, Giele, Kunszt and
Melnikov [61–63] (for a recent review, see ref. [85]), based on the OPP subtraction
method, and called generalised unitarity. This uses unitarity cuts of multiple prop-
agators to understand the functional dependence of the one-loop amplitude on the
virtual momentum l. While it is true that certain kinematic points lead to potential
instabilities in this approach, these can be avoided without greatly increasing the
computational time.

The remainder of this chapter is organised as follows. In section 3.2, I will discuss
the regularisation of divergent amplitudes within a numerical setting. In section 3.3, I
will introduce the Vermaseren-Van Neerven basis, which allows the loop momentum to
be parametrised in a convenient way. In section 3.4, I will use the ideas of generalised
unitarity to write the amplitude in terms of scalar integrals with loop momentum
dependent coefficients, and then show how the functional form of the coefficients is
fixed and how they can be determined. Finally, I will comment on the integration of
the scalar integrals in section 3.5.
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3.2 Dimensionality of the amplitude

As mentioned previously, a one-loop (or higher) scattering amplitude calculated in
a quantum field theory has both infrared (IR) and ultraviolet (UV) divergences. In
a renormalisable field theory, these can be regularised and the UV divergences ab-
sorbed into unobservable bare parameters, such as the mass or coupling, while the IR
divergences cancel against divergences originating from soft or collinear real radiation
(see section 2.2). In the ’t Hooft-Veltman prescription [112], the momenta and polar-
isations of the virtual particles are continued to D-dimensions, so that the amplitude
becomes an analytic function of D. The identification D = 4− 2ǫ is then made, and
the divergences appear as poles in ǫ as the limit ǫ → 0 is taken. Importantly, this
procedure contributes not only to the poles of the one-loop amplitude, but to the
finite part too. The part of the finite amplitude that can only be obtained by a con-
tinuation to D-dimensions is called the rational part, while the remainder of the finite
part – which can be obtained from a calculation in 4-dimensions – is known as the
cut-constructible part. One way of obtaining the full amplitude is to extend the uni-
tarity calculation to D-dimensions (other approaches, based on evaluating Feynman
diagrams [138–140] or using on-shell recursion relations [141–143], are also possible).

The obvious difficulty in implementing such a procedure numerically lies in the
construction of momenta and polarisations in a non-integer number of dimensions.
The solution is to find the general D-dependence of a one-loop amplitude, so that the
amplitude can be evaluated numerically for an integer number of dimensions and the
result in a non-integer number of dimensions obtained. To do this, I will distinguish
between the dimensionality of internal momenta, D, and internal polarisations, Ds,
with the restriction that D ≤ Ds [144]. Equation (3.1.1) can then be rewritten as

A(D,Ds)
N (p1, p2, ..., pN) =

∫

dDl

(2π)D
N (Ds)(p1, p2, ..., pN , J1, J2, ..., JN ; l)

D0D1...DN−1

, (3.2.1)

where the propagatorsDi are inD dimensions. The numerator functionN has explicit
Ds dependence due to the number of spin eigenstates of the internal polarisations.
For bosonic internal particles, there are Ds − 2 spin eigenstates eiµ, which satisfy

Ds−2
∑

i

eiµ(l)e
i
ν(l) = −g(Ds)

µν +
lµbν + lνbµ

l.b
, (3.2.2)

where b is a light-cone vector which fixes the gauge. For fermionic internal particles,
there are 2(Ds/2−1) polarisations u

(s)
i (l, m) satisfying the Dirac equation

2Ds/2
∑

j=1

(

lµΓ
µ
ij −mδij

)

u
(s)
j (l, m) = 0, (3.2.3)

and the completeness relation

2(Ds/2−1)
∑

s=1

u
(s)
i ū

(s)
j = lµΓ

µ
ij +mδij , (3.2.4)
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where Γ is the Dirac matrix in Ds-dimensions. Since l is in D-dimensions with
D ≤ Ds, the implicit sum over the space-time index µ runs from 0 to D − 1.

Additionally, N has an implicit D-dependence through the D-dimensional loop
momentum l. However, since all external momenta remain 4-dimensional, a con-
traction of the kind /l /pi will only involve the 4-dimensional components of l. The
D-dependence of N appears only through

l2 = l20 − l21 − l22 − l23 −
D−1
∑

i=4

l2i = l̄2 − l̃2, (3.2.5)

where l̄ is the 4-dimensional component of l, and l̃ is the remaining (D−4)-dimensional
part.

A one-loop amplitude involves closing all internal particles, or equivalently, con-
tracting all Lorentz indices from propagators and vertices. For a one-loop amplitude
with no closed fermion loops, there is a single trace over the metric tensor gµν(Ds).
Thus the amplitude must be linear in Ds, and the numerator can be expressed as

N (Ds)(l) = N0(l) + (Ds − 4)N1(l), (3.2.6)

where the dependence on the external momenta and polarisations has been sup-
pressed. Neither N0 or N1 have explicit dependence on Ds, and only implicit depen-
dence on D through l2. By evaluating N at two integer values of Ds, N0 and N1 are
found to be

N0(l) =
(Ds2 − 4)N (Ds1)(l)− (Ds1 − 4)N (Ds2)(l)

Ds2 −Ds1

N1(l) =
N (Ds2 )(l)−N (Ds1 )(l)

Ds2 −Ds1

.

(3.2.7)

If a closed fermion loop is present, the trace is taken over the internal dimensions
of the Dirac matrices. This introduces a factor TDs = 2Ds/2−2. There is no linear
dependence on Ds, and the numerator is written as

NDs

f (l) = TDsN0,f(l). (3.2.8)

The interpolation of Ds can be performed either in the four-dimensional helicity
(FDH) scheme [144] or in the ’t Hooft-Veltman (HV) scheme [112]. The former takes
the limit Ds → 4, while the latter takes Ds → 4 − 2ǫ. For bosonic (or bosonic and
fermionic) internal particles, the two schemes are related by

NHV(l) = N FDH(l)− 2ǫN1(l) (3.2.9)

with N FDH(l) = N0(l). If the internal particles are only fermions, then the relation-
ship is

NHV
f (l) = 2−ǫ(N FDH

f (l)) (3.2.10)

with N FDH
f (l) = N0(l). Combining equations (3.2.7), (3.2.9) and (3.2.10), the ampli-

tudes can then be written as

AFDH =
Ds2 − 4

Ds2 −Ds1

A(D,Ds1 ) − Ds1 − 4

Ds2 −Ds1

A(D,Ds2 )

AHV =AFDH − 2ǫ

Ds2 −Ds1

(

A(D,Ds2) −A(D,Ds1)
)

,
(3.2.11)
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for bosonic internal particles, and

AFDH
f =

A(D,Ds1)

f

TDs1

AHV
f =2−ǫ

(

AFDH
f

)

(3.2.12)

for purely fermionic internal particles.
Requiring that Ds is even to allow the construction of internal spinors, and that

4 < D ≤ Ds, the simplest choice for the dimensionality of the internal momentum and
polarisations is D = 5, Ds1 = 6 and Ds2 = 8. Thus, the programme is to perform all
calculations with D = Ds = 4 to obtain the cut-constructible part of the amplitude,
and then repeat all calculations with D = 5 and Ds = 6, 8 to obtain the rational part
of the amplitude in the desired scheme through equation (3.2.11) or (3.2.12).
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3.3 Vermaseren-Van Neerven Basis

I shall now make a small detour to describe the Vermaseren-Van Neerven basis [128].
This is necessary because the ability to write the loop momentum in this basis is
one of the key ingredients of the generalised unitarity method discussed in section
3.4. Consider R incoming momenta (usually external momenta or sums thereof),
labeled k1, ..., kR, in an integer number D of dimensions. Momentum conservation
gives

∑R
i=1 ki = 0, so that at most R − 1 of the momenta are linearly independent.

The dimensions of the physical space spanned by the momenta ki is thus DP =
min(R − 1, D). To see how a set of basis vectors for the physical space may be
constructed, consider the Schouten identity with R = D = 4

lλǫµ1µ2µ3µ4 = lµ1ǫλµ2µ3µ4 + lµ2ǫµ1λµ3µ4 + lµ3ǫµ1µ2λµ4 + lµ4ǫµ1µ2µ3λ, (3.3.1)

where l is an arbitrary loop momentum vector and ǫµ1...µD is the fully antisymmetric
tensor in D-dimensions. This identity implies that at most D = 4 incoming momenta
can be linearly independent. Contracting each side with k1µ1k2µ2k3µ3k4µ4 gives

lλǫk1k2k3k4 = (l.k1)ǫ
λk2k3k4 + (l.k2)ǫ

k1λk3k4 + (l.k3)ǫ
k1k2λk4 + (l.k4)ǫ

k1k2k3λ (3.3.2)

where I have adopted the notation ǫµ1...µt...µDkµt = ǫµ1...kt...µD . Then define the basis
vectors

vλi =
ǫk1k2k3k4ǫ

k1...ki−1λki+1...k4

ǫk1k2k3k4ǫ
k1k2k3k4

. (3.3.3)

to write l as
lλ = (l.k1)v

λ
1 + (l.k2)v

λ
2 + (l.k3)v

λ
3 + (l.k4)v

λ
4 . (3.3.4)

The component of l in the vi direction is simply the projection of l onto the momentum
ki. The generalised Krönecker delta in R-dimensions is

δµ1µ2...µR
ν1ν2...νR

= det











δµ1
ν1

δµ1
ν2

... δµ1
νR

δµ2
ν1

δµ2
ν2

... δµ2
νR

...
...

...
...

δµR
ν1

δµR
ν2

... δµR
νR











. (3.3.5)

Then, using the general identity ǫν1...νDǫ
µ1...µD = δµ1...µD

ν1...νD
, equation (3.3.3) becomes

vλi =
δ
k1...ki−1λki+1...k4
k1...ki−1kiki+1...k4

∆(k1, k2, k3, k4)
(3.3.6)

where the Gram determinant is

∆(k1, k2, ..., kR) = δk1k2....kRk1k2...kR
. (3.3.7)

The basis vectors vi do not form an othornormal set, however they are orthonormal
to the incoming momenta kj, vi.kj = δij . While I have derived the basis vectors in the
special case where D = R = 4, the definition is easily extendable to DP dimensions:

vλi =
δ
k1...ki−1λki+1...kDP
k1...ki−1kiki+1...kDP

∆(k1, ..., kDP
)

. (3.3.8)
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The remainder of the D-dimensional space is the transverse space, with dimension
DT = max(0, D − R + 1). If R ≤ D, then the metric tensor on the transverse space
is

wν
µ(k1, ..., kR−1) =

δ
k1...kR−1ν
k1...kR−1µ

∆(k1, ..., kR−1)
, (3.3.9)

which satisfies wµ
µ = D − R + 1, and raising and lowering the indices of w can be

accomplished through wµ
αw

αν = wµν . Furthermore, wν
µk

µ
i = 0 for i = 1, ..., R − 1, so

w is also the projection operator onto the transverse space. The basis vectors for this
space are defined as

wµν =
D−R+1
∑

i=1

nµ
i n

ν
i . (3.3.10)

The orthonormality property ni.nj = δij follows from the trace over w, while wν
µk

µ
i = 0

implies that nr.ki = 0 and hence nr.vi = 0.
The metric tensor in the full D-dimensions can then be written as

gµν =

DP
∑

i=1

kµ
i v

ν
i +

DT
∑

i=1

nµ
i n

ν
i . (3.3.11)

Contracting this with l generalises equation (3.3.4) to arbitrary values of R:

lλ =

DP
∑

i=1

(l.ki)v
λ
i +

DT
∑

i=1

(l.ni)n
λ
i . (3.3.12)

Referring to equation (3.1.2), the i-th propagator has denominator Di = (l+qi)
2−

m2
i with qi = qi−1 + ki. Then

Di −Di−1 = 2l.(qi − qi−1) + q2i − q2i−1 −m2
i +m2

i−1 (3.3.13)

so

l.ki =
1

2

(

Di −Di−1 − q2i + q2i−1 +m2
i −m2

i−1

)

. (3.3.14)

Substituting the above into equation (3.3.12) gives

lλ =
1

2

DP
∑

i=1

(Di −Di−1)v
λ
i +

DT
∑

i=1

(l.ni)n
λ
i + V λ

R (3.3.15)

with

V λ
R =

1

2

DP
∑

i=1

(−q2i + q2i−1 +m2
i −m2

i−1)v
λ
i . (3.3.16)

The loop momentum l is expressed in terms of propagators. The usefulness of this
will become apparent when looking at the OPP subtraction procedure in the following
section.
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3.4 Generalised Unitarity

I now return to the evaluation of the one-loop amplitude equation (3.2.1), where the
dependence of A and N on D and Ds is understood from the previous discussion and
will not be indicated. The dependence on external momenta and polarisations pi and
Ji is also understood. The suggestion of Ossola, Papadoupoulos and Pittau [57] was
to write the integrand of equation (3.2.1) as

AN(l) =
N (l)

D0D1...DN−1

=
1

D0D1...DN−1

×
{

∑

[i1|i5]
ẽi1i2i3i4i5(l)

∏

j 6=[i1|i5]
Dj(l) +

∑

[i1|i4]
d̃i1i2i3i4(l)

∏

j 6=[i1|i4]
Dj(l)+

∑

[i1|i3]
c̃i1i2i3(l)

∏

j 6=[i1|i3]
Dj(l) +

∑

[i1|i2]
b̃i1i2(l)

∏

j 6=[i1|i2]
Dj(l)+

∑

i1

ãi1(l)
∏

j 6=i1

Dj(l)

}

.

(3.4.1)

In contrast to the coefficients in the expansion of the amplitude in terms of master
integrals, equation (3.1.3), the unitarity coefficients in equation (3.4.1) are functions
of loop momentum l. However, their dependence on l is quite simple. Furthermore,
most of the terms are odd in l, and thus trivially integrate to zero.

In order to solve for the coefficients in equation (3.4.1), I will set groups of propa-
gators Dj to zero, and express the coefficients as residues of the integrand. Beginning
with the highest-point coefficient ẽi1i2i3i4i5(l), set l = li1i2i3i4i5 such that

Di1(li1i2i3i4i5) = Di2(li1i2i3i4i5) = Di3(li1i2i3i4i5)

= Di4(li1i2i3i4i5) = Di5(li1i2i3i4i5) = 0,

and write

ẽi1i2i3i4i5(l) = Resi1i2i3i4i5

(

AN(l)
)

≡
[

Di1(l)Di2(l)Di3(l)Di4(l)Di5(l)AN(l)
]

l=li1i2i3i4i5

.
(3.4.2)

The remaining coefficients are found after subtracting the contributions from the
known higher-point coefficients. Thus d̃i1i2i3i4(l) is found by choosing l = li1i2i3i4 such
that

Di1(li1i2i3i4) = Di2(li1i2i3i4) = Di3(li1i2i3i4) = Di4(li1i2i3i4) = 0

and then taking

d̃i1i2i3i4(l) = Resi1i2i3i4

(

AN(l)−
∑

i5 6=i1,i2,i3,i4

ẽi1i2i3i4i5(l)

Di1(l)Di2(l)Di3(l)Di4(l)Di5(l)

)

. (3.4.3)
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Similarly, c̃i1i2i3(l) is found by choosing l = li1i2i3 such that Di1(li1i2i3) = Di2(li1i2i3) =
Di3(li1i2i3) = 0; b̃i1i2(l) is found by choosing l = li1i2 such that Di1(li1i2) = Di2(li1i2) =
0; and ãi1(l) is found by choosing l = li1 such that Di1(li1) = 0. These are given by

c̃i1i2i3(l) = Resi1i2i3

(

AN(l)−
1

2!

∑

i4,i5 6=i1,i2,i3

ẽi1i2i3i4i5(l)

Di1(l)Di2(l)Di3(l)Di4(l)Di5(l)

−
∑

i4 6=i1,i2,i3

d̃i1i2i3i4(l)

Di1(l)Di2(l)Di3(l)Di4(l)

)

,

b̃i1i2(l) = Resi1i2

(

AN(l)−
1

3!

∑

i3,i4,i5 6=i1,i2

ẽi1i2i3i4i5(l)

Di1(l)Di2(l)Di3(l)Di4(l)Di5(l)

− 1

2!

∑

i3,i4 6=i1,i2

d̃i1i2i3i4(l)

Di1(l)Di2(l)Di3(l)Di4(l)

−
∑

i3 6=i1,i2

c̃i1i2i3(l)

Di1(l)Di2(l)Di3(l)

)

,

ãi1(l) = Resi1

(

AN(l)−
1

4!

∑

i2,i3,i4,i5 6=i1

ẽi1i2i3i4i5(l)

Di1(l)Di2(l)Di3(l)Di4(l)Di5(l)

− 1

3!

∑

i2,i3,i4 6=i1

d̃i1i2i3i4(l)

Di1(l)Di2(l)Di3(l)Di4(l)

− 1

2!

∑

i2,i3 6=i1

c̃i1i2i3(l)

Di1(l)Di2(l)Di3(l)
−

∑

i2 6=i1

b̃i1i2(l)

Di1(l)Di2(l)

)

.

(3.4.4)

Choosing loop momentum l such that J propagators are set to zero is equivalent
to putting the J internal particles on-shell. As a result, the residues are calculated
using J tree-level amplitudes (the details of how these amplitudes are calculated is the
subject of chapter 4). This procedure is known as “cutting” a loop integral, and the
setting of 5,4,3,2, and 1 propagators on-shell are referred to as pentuple, quadruple,
triple, double and single cuts, respectively. The indices of the unitarity coefficients
ẽ, d̃, c̃, b̃, ã, indicate which internal propagators need to be cut in order to extract that
coefficient; I shall refer to these indices as “unitarity indices”. There is a sum over
unitarity indices for each unitarity cut – propagators should be set to zero in every
permutation2.

As an example, the coefficient of a quadruple cut (1234) of a six-point amplitude

2In fact, it is not necessary to implement massless single cuts, since the master integral multiplying
these cuts vanishes in dimensional regularisation. Similarly, the master integrals multiplying massless
double cuts separated by a single massless external particle also vanish, so these cuts are also
discarded [85].
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is

d̃1234 =Res1234

(

AN(l)−
∑

i5 6=1,2,3,4

ẽ1234i5
D1D2D3D4Di5

)

=
∑

A0(l1; p1, ..., pj;−l2)×A0(l2; pj+1, ..., pk;−l3)

×A0(l3; pk+1, ..., pm;−l4)×A0(l4; pm+1, ..., pN ;−l1)

− ẽ12345
D5(l1234)

− ẽ12346
D6(l1234)

.

(3.4.5)

The sum in the second line is over all quantum numbers of the cut internal particles,
including the polarisations. This introduces the Ds dependence discussed in section
3.2.

In four dimensions, at most four restrictions on the loop momentum l leading to
Di(l) = 0 can be imposed, meaning that at most four propagators can be set to zero
at a time. Since, as was discussed in the previous section, the rational part of the
amplitude needs to be computed in D = 5, five propagators can be set to zero. This
explains why the maximum number of unitarity cuts allowed is five, i.e. why equation
(3.4.1) has five terms.

Determining the loop momentum

I will now address the issue of how to find loop momenta l such that a given number
J propagators vanish:

Din = (qin + l)2 −m2
in = 0, (3.4.6)

for n = 1, ..., J . This defines J inflow momenta qin for the J tree-level ampli-
tudes. These can be used to construct a Vermaseren-Van Neerven basis with DP =
min(D, J−1) physical dimensions and DT = max(0, D−J+1) transverse dimensions.
Since D ≥ J , this means that DT ≥ 1. One of the transverse basis vectors is iden-
tified with a basis vector in D − 4 dimensions, and is labeled nǫ, as a reminder that
any quantity involving this vector contributes to the rational part. The remaining
transverse directions remain in four dimensions. The physical space is spanned by
vectors v1, ..., vDP

defined as equation (3.3.6) using the external momenta of the tree-
level amplitudes, or equivalently the momentum difference between cut propagators:
qij =

∑j
l=1 kl. Referring to equation (3.3.15), the loop momentum can be written as

lµ =
1

2

DP
∑

n=1

(Din −Din−1)v
µ
in + V µ

R +

DT−1
∑

i=1

αin
µ
i + αǫn

µ
ǫ , (3.4.7)

with Di0 = DiJ , and αi ≡ l.ni and αǫ ≡ l.nǫ. Setting the denominators Din to zero
this becomes

lµ = V µ
R +

DT−1
∑

i=1

αin
µ
i + αǫn

µ
ǫ . (3.4.8)
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Also, using equation (3.3.16),

VR.qij = −1

2

DP
∑

m=1

(q2im −m2
im − q2im−1

+m2
im−1

)vµim .

j
∑

l=1

kl

= −1

2
(q2ij −m2

ij
+mi0)

2,

(3.4.9)

where the loop momentum is parametrised by setting q0 = 0. Then, returning to the
expression of the propagator,

0 = (qin + l)2 −m2
in

= V 2
R +

DT−1
∑

i=1

α2
i + α2

ǫ + q2in − (q2in −m2
in +m2

i0
)−m2

in

= V 2
R +

DT−1
∑

i=1

α2
i + α2

ǫ −m2
i0
.

(3.4.10)

The terms V 2
R and m2

i0
are set by the kinematics of the unitarity cut and the

masses of the cut internal propagators. There is then freedom in choosing the values
of αi used in constructing l, provided that equation (3.4.10) is satisfied.

As an aside, note that equation (3.4.10) implies that the maximum number of
unitarity cuts is five for any D > 4, not just D = 5 as discussed above. This is
because the (D − 4)-dimensional components of l enter the denominators as α2

ǫ , so
that extending the loop momentum from 4-dimensions to D-dimensions provides only
one additional variable to the denominators, irrespective of the value of D.

Functional form of unitarity coefficients

I will now consider the functional dependence of the unitarity coefficients ẽ, d̃, c̃, b̃ and
ã on the loop momentum l, beginning with the ẽ 3. The first term of equation (3.4.1)
is

∑

[i1|i5]

ẽ(l)

Di1Di2Di3Di4Di5

. (3.4.11)

In a renormalisable field theory, the rank of the integral cannot be larger than the
number of denominators. Thus the maximum rank of the above five-point function
is five. The maximum rank numerator can be written as

N (5)(l) =

5
∏

i=1

wi.l, (3.4.12)

where the wi are combinations of external momenta and polarisations. Using equation
(3.4.7), with D = 5, R = 5, the loop momentum is

lµ =
1

2

4
∑

i=1

(

Di −Di−1 − q2i + q2i−1 +m2
i −m2

i−1

)

vµi + (l.nǫ)n
µ
ǫ . (3.4.13)

3For convenience, I will drop the unitarity indices, since this discussion holds for any unitarity
cut.
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Since wi are four-dimensional, the product wi.nǫ always vanishes. Applying this to
one factor of l at a time results in

N (5)(l) =
4
∏

i=1

(wi.l)(w5.l)

=
1

2

4
∏

i=1

(wi.l)w5µ.
(

4
∑

i=1

(

Di −Di−1 − q2i + q2i−1 +m2
i −m2

i−1

)

vµi .

(3.4.14)

The terms involving the propagators will cancel with the propagators in the denom-
inator, leading to rank-four, four-point integrals. The remaining terms will lead to
rank-four, five-point integrals. Repeating this procedure on all the rank-four five-
point integrals (those originating from the above reduction as well as those present
in the amplitude from the outset) leads to rank-three five- and four-point integrals.
Exhausting this, we are left with a scalar five-point function and four-point functions
of rank one through four. The coefficients of the latter can be absorbed into the co-
efficients of four-point functions d̃ in equation (3.4.1), leaving only a scalar five-point
function. Thus, the coefficient ẽ is independent of l:

ẽ(l) = ẽ. (3.4.15)

In fact, referring to equation (3.4.10) with αǫ = l.nǫ, the projection of the loop
momentum onto the transverse space is

(l.nǫ)
2 = m2

0−
1

4

4
∑

i,j=1

(vi.vj)(−q2i +q2i−1+m2
i −m2

i−1)(−q2j +q2j−1+m2
j−m2

j−1), (3.4.16)

meaning that either the scalar five-point integral or the integral
∫

dDl
(2π)D

(l.nǫ)2

D0D1D2D3D4

can serve as the basis integral. The latter is preferable, since it vanishes as D → 4.
This avoids cancellations between five- and four-point integrals, which could lead to
numerical instabilities if the integrals are large. The five-point coefficients therefore
do not contribute directly to the one-loop amplitude. However, it is still important
to compute ẽ to determine the coefficients of lower-point integrals, as in equations
(3.4.3) and (3.4.4).

Focusing on the coefficients of four-point integrals, using equation (3.4.7) with
R = 4, D = 5

lµ =
1

2

3
∑

i=1

(

Di −Di−1 − q2i + q2i−1 +m2
i −m2

i−1

)

vµi + (l.n4)n
µ
4 + (l.nǫ)n

µ
ǫ . (3.4.17)

Substituting this into the four-point numerator with the highest rank of four

N (4)(l) =
4
∏

i=1

wi.l, (3.4.18)

will result in a rank-three three-point function, a rank-three four-point function, and
an additional rank-four four-point integral

N (4)(l) =

3
∏

i=1

(wi.l)(w4.n4)(l.n4). (3.4.19)
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Repeating this procedure, a rank-four four-point integral is again kept

N (4)(l) =
2
∏

i=1

(wi.l)(w4.n4)(w3.n4)(l.n4)
2, (3.4.20)

and repeating a further two times leads to terms ∼ (l.n4)
3 and ∼ (l.n4)

4. A similar
procedure may be performed on the four-point functions of lower rank. Thus, the
coefficients d̃ of the four-point integrals must be a polynomial in (l.n4) of degree 4.
Squaring equation (3.4.17) and using l2 = D0 +m2

0 implies

(l.n4)
2 = −(l.nǫ)

2 + constant + F(Di) (3.4.21)

where constant terms contribute to the rank-two four-point integrals and the terms
containing propagators F(Di) contribute to three-point integrals. Then d̃ can be
written as

d̃ = d̃0 + d̃1(l.n4) + d̃2(l.nǫ)
2 + d̃3(l.n4)(l.nǫ)

2 + d̃4(l.nǫ)
4. (3.4.22)

Importantly, the coefficients in equation (3.4.22) are independent of l: the dependence
of the unitarity coefficient d̃ on the loop momentum is the polynomial dependence
explicity shown in this equation.

Considering the coefficients of three-point integrals, the loop momentum is

lµ =
1

2

2
∑

i=1

(

Di−Di−1−q2i +q2i−1+m2
i−m2

i−1

)

vµi +(l.n3)n
µ
3+(l.n4)n

µ
4+(l.nǫ)n

µ
ǫ . (3.4.23)

Then the highest-rank numerator will be

N (3) =
3
∏

i=1

(wi.l)

=
(

const + F(Dj) + (w1.n3)(l.n3) + (w1.n4)(l.n4)
)

×
(

const + F(Dj) + (w2.n3)(l.n3) + (w2.n4)(l.n4)
)

×
(

const + F(Dj) + (w3.n3)(l.n3) + (w3.n4)(l.n4)
)

,

(3.4.24)

where the terms in F(Dj) contribute to the two-point integrals, and the constant
terms contribute to three-point integrals of rank < 3. The three-point integrals that
remain have coefficients

c̃ =c̃0 + c̃1(l.n3) + c̃2(l.n4) + c̃3(l.n3)(l.n4) + c̃4(l.n3)
2 + c̃5(l.n4)

2+

c̃6(l.n3)
3 + c̃7(l.n4)

3 + c̃8(l.n3)
2(l.n4) + c̃9(l.n3)(l.n4)

2.
(3.4.25)

Squaring the loop momentum indicates that (l.n3)
2, (l.n4)

2 and (l.nǫ)
2 are related

to each other, with the relationship involving other terms which again contribute to
either linear terms in equation (3.4.25) or two-point integrals. This is used to remove
the two terms cubic in l in equation (3.4.25), to write4

4Equally well, the terms involving (l.n3)
2(l.n4) and (l.n3)(l.n4)

2 could be removed to obtain

c̃ =c̃0 + c̃1(l.n3) + c̃2(l.n4) + c̃3
(

(l.n3)
2 − (l.n4)

2
)

+ c̃4(l.n3)(l.n4)+

c̃5(l.n3)
3 + c̃6(l.n4)

3 + c̃7(l.nǫ)
2 + c̃8(l.nǫ)

2(l.n3) + c̃9(l.nǫ)
2(l.n4).
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c̃ =c̃0 + c̃1(l.n3) + c̃2(l.n4) + c̃3(l.n3)(l.n4) + c̃4
(

(l.n3)
2 − (l.n4)

2
)

+

c̃5(l.n3)
2(l.n4) + c̃6(l.n3)(l.n4)

2 + c̃7(l.nǫ)
2 + c̃8(l.nǫ)

2(l.n3)+

c̃9(l.nǫ)
2(l.n4).

(3.4.26)

This form of the expression makes solving for the coefficients c̃i easier.
Looking at the coefficients of the two-point integrals, the loop momentum is

lµ =
1

2

(

D1 −D0 − q21 +m2
1 −m2

0

)

vµ1 + (l.n2)n
µ
2 + (l.n3)n

µ
3 + (l.n4)n

µ
4

+ (l.nǫ)n
µ
ǫ ,

(3.4.27)

and the highest-rank numerator is

N (2) =
2
∏

i=1

(wi.l)

=
(

const + F(Dj) + (w1.n2)(l.n2) + (w1.n3)(l.n3) + (w1.n4)(l.n4)
)

×
(

const + F(Dj) + (w2.n2)(l.n2) + (w2.n3)(l.n3) + (w2.n4)(l.n4)
)

.

(3.4.28)

The coefficients are then

b̃ =b̃0 + b̃1(l.n2) + b̃2(l.n3) + b̃3(l.n4) + b̃4(l.n2)
2 + b̃5(l.n3)

2

+ b̃6(l.n4)
2 + b̃7(l.n2)(l.n3) + b̃8(l.n2)(l.n4) + b̃9(l.n3)(l.n4).

(3.4.29)

Again, there is a relation between (l.n2)
2, (l.n3)

2, (l.n4)
2 and (l.nǫ)

2, and equation
(3.4.29) can be rewritten as

b̃ =b̃0 + b̃1(l.n2) + b̃2(l.n3) + b̃3(l.n4) + b̃4
(

(l.n2)
2 − (l.n3)

2
)

+ b̃5
(

(l.n2)
2 + (l.n3)

2 − 2(l.n4)
2
)

+ b̃6(l.n2)(l.n3) + b̃7(l.n2)(l.n4)

+ b̃8(l.n3)(l.n4) + b̃9(l.nǫ)
2.

(3.4.30)

Finally, the coefficients of the one-point integrals can be simply written as

ã = ã0 + ã1(l.n1) + ã2(l.n2) + ã3(l.n3) + ã4(l.n4). (3.4.31)

Solving the OPP equations

It is worthwhile mentioning how one can go about solving the linear equations (3.4.22),
(3.4.26), (3.4.30), and (3.4.31). Recall that the left-hand sides of these equations are
determined by computing tree-level amplitudes. While it suffices to use any general
technique to solve simulataneous equations, such as Gauss-Jordan elimination, it is
also possible to do so by making astute parametrisations of the loop momentum. Of
course, when solving the equations numerically, one can change parametrisations at
will.
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Since the coefficients of the five-point integral in equation (3.4.1) are indepen-
dent of l, all one needs to do is evaluate the left-hand side of this equation for any
parametrisation of l which sets five propagators to zero, and this gives the constant
coefficient ẽ.

In order to solve for the coefficient of the four-point integral, I will begin by working
in four dimensions. Then only the first two terms of equation (3.4.22) are non-zero.
The loop momentum can be written as lµ± = V µ

4 ± l⊥n
µ
4 , with l⊥ the projection of l

onto the transverse space, and the first two coefficients in equation (3.4.22) can be
recovered:

d̃0 =
d̃(l+) + d̃(l−)

2
,

d̃1 =
d̃(l+)− d̃(l−)

2l⊥
.

(3.4.32)

Extending the dimensionality of l to five, and writing l̄µ± = V µ
4 ± 1√

2
l⊥
(

nµ
4 + nµ

ǫ

)

, and

lµǫ = V µ
4 + l⊥n

µ
ǫ , the remaining coefficients are

d̃2 =
1

l2⊥

(

2d̃(l̄+) + 2d̃(l̄−)− d̃(lǫ)− 3d̃0
)

,

d̃3 =

√
2

l3⊥

(

d̃(l̄+)− d̃(l̄−)−
√
2d̃1l⊥

)

,

d̃4 =
2

l4⊥

(

−d̃(l̄+)− d̃(l̄−) + d̃(lǫ) + d̃0
)

.

(3.4.33)

When dealing with the coefficients of the three-point integrals, I again begin by
working in four dimensions, so that the last three terms of equation (3.4.26) are zero,
and parametrise the loop momentum as lµ = V µ

4 +l⊥(cos θn
µ
3+sin θnµ

4 ). The unitarity
coefficients can be rewritten as a polynomial in t = exp(iθ)

c̃(t) =

3
∑

p=−3

C̃pt
p. (3.4.34)

Applying a Fourier transform, the C̃p are given by

C̃p =
1

7

6
∑

m=0

c̃(tm)t
−p
m , (3.4.35)

where tm = exp(2πmi/7). Using this parametrisation of the loop momentum in
equation (3.4.26), expanding equation (3.4.34), and equating coefficients of cos θ and
sin θ, the coefficients can be related:

c̃0 = C̃0;

c̃3 = 2i
l2
⊥

(

C̃2 − C̃−2

)

; c̃4 = 1
l2
⊥

(

C̃2 + C̃−2

)

;

c̃5 = 4i
l3
⊥

(

C̃3 − C̃−3

)

; c̃6 = − 4
l3
⊥

(

C̃3 + C̃−3

)

;

c̃1 = 1
l⊥

(

C̃1 + C̃−1

)

− c̃6
4
l2⊥; c̃2 = i

l⊥

(

C̃1 − C̃−1

)

− c̃5
4
l2⊥.

(3.4.36)
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Moving into five dimensions to solve for the remaining three coefficients c̃7, c̃8,
and c̃9, the loop momentum is parametrised as lµ± = V µ

3 + l⊥√
2

(

±nµ
3 +nµ

ǫ

)

. Subtracting

from both sides of equation (3.4.26) all the terms whose coefficients are known from
equation (3.4.36), and writing the resulting left-hand side expression as c̃subtr leads to

c̃subtr(l±) = c̃7
l2⊥
2

± c̃8
l3⊥
2
√
2
, (3.4.37)

which allows c̃7 and c̃8 to be found. Finally, c̃9 can be found for any parametrisation
of l since the remaining coefficients are all known.

This procedure may run into problems if the magnitude of the transverse loop
momentum l⊥ is small, since this may lead to numerical errors. If this is the case,
then the loop momentum is parametrised as lµ± = V µ

3 +x3n
µ
3 ±x4n

µ
4 with x3 = exp(iθ)

and x4 =
√

l2⊥ − x2
3. The function C+(x3) = c̃(l+)+c̃(l−)

2
is written as a third degree

polynomial in x3,

C+(x3) =

3
∑

n=0

C̃nx
n
3 . (3.4.38)

The coefficients of this expansion can be found using a Fourier transform, and can
then be related by equating coefficients of powers of x3:

c̃6 = −C̃3; c̃4 = C̃2

2
;

c̃1 = C̃1 − c̃6l
2
⊥; c̃0 = C̃0 + c̃4l

2
⊥.

(3.4.39)

The remaining four-dimensional coefficients can be found by choosing specific values
of x3 in the function C−(x3) =

c̃(l+)−c̃(l−)
2x4

:

c̃3 =
C−(x3 = 1)− C−(x3 = −1)

2
,

c̃2 =
C−(x3 = 1) + C−(x3 = i)− (1 + i)c̃3

2
,

c̃5 =
C−(x3 = 1)− C−(x3 = i)− (1− i)c̃3

2
.

(3.4.40)

The extension to five dimensions is similar to before. Writing the loop momentum
lµ± = V µ

3 ±nµ
3 +

√

l2⊥ − 1nµ
ǫ , and defining c̃subtr by subtracting all the four-dimensional

terms from c̃ modifies equation (3.4.37):

c̃subtr(l±) = −c̃7(l
2
⊥ − 1)∓ c̃8(l

2
⊥ − 1), (3.4.41)

allowing c̃7 and c̃8, and hence c̃9, to be found.
Turning now to equation (3.4.30) for the coefficients b̃1, ..., b̃9, the loop momentum

in four dimensions is parametrised by lµ±± = V µ
2 + l⊥(±x2n

µ
2 ± x3n

µ
3 ) with x2 = cosφ

and x3 = sinφ. The left-hand side of equation (3.4.30) can be written as a polynomial

b̃++ = b̃(l++) =

2
∑

n=−2

B̃n exp(inφ). (3.4.42)
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The values of B̃n are then found using a Fourier transform, as was done for the
triple-cut coefficients c̃i. Equating coefficients of powers of x2 and x3 gives

b̃1 = 1
l⊥

(

B̃1 + B̃−1

)

; b̃2 = i
l⊥

(

B̃1 − B̃−1

)

;

b̃4 = 1
l2
⊥

(

B̃2 + B̃−2

)

; b̃6 = 2i
l2
⊥

(

B̃2 − B̃−2

)

.
(3.4.43)

Since the calculation is performed numerically, it is possible to change the parametri-
sation of l. Having found these four coefficients, the loop momentum is reparametrised
as lµ±± = V µ

2 + l⊥(±x2n
µ
2 ± x4n

µ
4 ), and b±± = b(l±±) are evaluated. The four known

coefficients are then subtracted to obtain bsubtr±± . Choosing x2 = x4 =
1√
2
gives

b̃7 =
bsubtr++ − bsubtr−+

l2⊥
,

b̃3 =
bsubtr−+ − bsubtr+−√

2l⊥
,

b̃5 =
2

3l2⊥

(

B̃0 −
1

2

(

bsubtr−+ + bsubtr+− + b̃7l
2
⊥
)

)

,

b̃0 = B̃0 − b̃5l
2
⊥.

(3.4.44)

Obtaining b̃8 is simple, as all other coefficients that survive in four dimensions are
known, and similarly extending to five dimensions allows b̃9 to be found.

Again, numerical instabilities may arise if l2⊥ is small. If this is the case, the
parametrisation lµ± = V µ

2 + x2n
µ
2 ±

√

l2⊥ − x2
2n

µ
3 , where x2 = exp(iθ), is used. Define

B+(x2) =
b(l+) + b(l−)

2
; B−(x2) =

b(l+)− b(l−)

2x3
(3.4.45)

and write the former as a quadratic in x2,

B+(x2) = B0 +B1x2 +B2x
2
2. (3.4.46)

The values of Bi can again be found using the Fourier method, and are related to the
coefficients by

b̃1 = B1; b̃4 = B2

2
. (3.4.47)

Furthermore,

b̃6 = B−(x2=1)−B−(x2=e2πi/3)

1−e2πi/3 ; b̃2 = B−(x2 = 1)− b̃6. (3.4.48)

Again, the loop momentum may be reparametrised as lµ±± = V µ
2 ±

√

l2⊥ − 1nµ
2 ± nµ

4 .
Subtracting the known coefficients from b obtains bsubtr±± = bsubtr(l±±). Then

b̃7 =
bsubtr++ −bsubtr

−+

2
√

l2
⊥
−1

; b̃3 =
bsubtr++ −bsubtr

−−

2
;

b̃5 = −1
3

(

bsubtr++ − B̃0 − b̃3 − b̃7
√

l2⊥ − 1
)

; b̃0 = B̃0 − b̃5l
2
⊥.

(3.4.49)
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Finally, the last coefficient in four dimensions, b̃8, as well as the five-dimensional
coefficient b̃9, can be obtained for any parametrisation of l.

When dealing with double cuts, the dimensionality of the physical space is one,
and the physical space is spanned by vµ1 = kµ

k2
, where k is the sum of the external

momenta of the tree-level amplitude that results from the unitarity cut. If the tree-
level amplitude has only one external particle, which is massless, then k2 = 0, and
the basis vectors cannot be constructed in this manner. The parametrisation of l
breaks down, as does the functional form of the unitarity coefficients of the two-point
integral b̃, and the method outlined above to find the coefficients b̃i is not applicable.
This only occurs in the double cuts – higher cuts have combinations of more than one
external momentum in the denominators of the basis vectors of the physical space,
and these denominators will not be zero. Furthermore, it is only a concern if the cut
internal particles are massive, since massless double cuts are discarded.

In order to parametrise l, I use a frame in which the external lightlike momentum is
p = (E, 0, 0, E), and define the complementary momentum p̄ = (E, 0, 0,−E). These
then serve as part of the basis, with the loop momentum

l = x1p
µ
1 + x2p̄

µ + lµ⊥, (3.4.50)

where lµ⊥ = y3n
µ
3 + y4n

µ
4 + yǫn

µ
ǫ . The basis vectors of the transverse space are chosen

such that they are orthogonal to both p and p̄. Note that this transverse space is
spanned by three vectors, and is therefore not the same transverse space as in the
Vermaseren-Van Neerven decomposition, which has four basis vectors for a double cut.
The two cut propagators on either side of the external momentum p have momenta
l and l + p (this can be achieved by an appropriate choice of q0) and masses mi and
mi+1. The on-shell conditions for these propagators are l2 = m2

i and (l+ p)2 = mi+1,
whence

x2 =
m2

i+1 −m2
i

s
,

x1 =
l2⊥ −m2

i

m2
i −m2

i+1

,
(3.4.51)

where s = 2p.p̄. This fixes x2 but allows some freedom in the choice of x1 and l⊥.
The double-cut coefficient is parametrised as

b̃ =b̃0 + b̃1(l.p̄) + b̃2(l.n3) + b̃3(l.n4) + b̃4(l.p̄)
2 + b̃5(l.p̄)(l.n3)

+ b̃6(l.p̄)(l.n4) + b̃7
(

(l.n3)
2 − (l.n4)

2
)

+ b̃8(l.n3)(l.n4)

+ b̃9(l.nǫ)
2.

(3.4.52)

I write l±± = x1p+ x2p̄ ± y3n
µ
3 ± y4n

µ
4 and b±± = b(l±±), and define combinations

b36(x1) =
1

4y4
(b++ − b+− + b−+ − b−−) = b̃3 + b̃6

x1s

2

b25(x1) =
1

2
(b++ − b−+ − 2y3y4b̃8) = b̃2y3 + b̃5y3

s

2

(3.4.53)

where

b̃8 =
1

4y3y4
(b++ − b+− − b−+ + b−−). (3.4.54)

38



Exercising freedom of choice for x1 allows four further coefficients to be found

b̃3 =
1

2

(

b36(x1 = 1/2) + b36(x1 = −1/2)
)

b̃6 =
2

s

(

b36(x1 = 1/2)− b36(x1 = −1/2)
)

b̃2 =
1

2y3

(

b25(x1 = 1/2) + b25(x1 = −1/2)
)

b̃5 =
2

sy3

(

b25(x1 = 1/2)− b25(x1 = −1/2)
)

.

(3.4.55)

Next, subtract the terms involving the above known coefficients from b++ to obtain
bsubtr++ . There is still the freedom to choose one of y3, with y4 then being restricted to
√

l2⊥ − y23. This fixes another coefficient

b̃7 = −2

3

[

bsubtr++ (y3 = 1/2, x1 = 1/2)− bsubtr++ (y3 = 1, x1 = 1/2)
]

. (3.4.56)

Next, consider the combination b014(x1) =
1
4

(

b+++b+−+b−++b−−
)

, where the terms
with known coefficients are subtracted. This gives

b̃1 =
2

s

(

b014(x1 = 1/2)− b014(x1 = −1/2)
)

. (3.4.57)

Finally, the terms with known coefficients are subtracted from b014 and b++ to give
b04 and b++

04 , and

b̃0 = −1

3

(

b04(x1 = 1/2)− 4b++
04 (x1 = 1/4, y3 = 1)

)

. (3.4.58)

The remaining four-dimensional coefficient b̃4, as well as the five-dimensional coeffi-
cient b̃9, can be found from the known coefficients.

Last, the coefficients of equation (3.4.31) need to be found. However, as will be
discussed in section 3.5, only the constant term contributes to the one-loop ampli-
tude. Furthermore, there are no lower-cut unitarity coefficients from which the ã is
subtracted (as was the case with ẽ). It therefore suffices to find the constant term of
equation (3.4.31). This can be done by choosing any parametrisation of l which puts
the single propagator on-shell, and then computing the left-hand side of equation
(3.4.31) for l and −l

ã0 =
1

2

(

ã(l) + ã(−l)
)

. (3.4.59)
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3.5 Performing the integration

Looking at equations (3.4.22), (3.4.26), (3.4.30), and (3.4.31), it is clear that the
only dependence of the unitarity coefficients in equation (3.4.1) on l is through its
projection onto the transverse space. Excluding the constant terms, the integral over
l can be replaced by one over l⊥, the projection of l onto the transverse space

lµ⊥ =

DT−1
∑

i=1

(l.ni)n
µ
i + (l.nǫ)n

µ
ǫ . (3.5.1)

This means that (l.qi) = 0, so the denominators are functions of l2, rather than l.

Clearly, the angular integral
∫

dl⊥l
µ
⊥ = 0. Furthermore,

∫

dl⊥l
µ
⊥l

ν
⊥ =

∫

dl⊥
l2
⊥

DT
gµνDT

.
Using the orthogonality of the transverse space basis vectors, it is clear then that,
in equations (3.4.22), (3.4.26), (3.4.30) and (3.4.31), the only terms which survive
integration over l are the constant ones, and the terms d̃2(l.nǫ)

2, d̃4(l.nǫ)
4, c̃7(l.nǫ)

2

and b̃9(l.nǫ)
2. Equation (3.4.1) becomes

AN(l) =
∑

[i1|i5]
ẽ0;i1i2i3i4i5(l.nǫ)

2 1

Di1Di2Di3Di4Di5

+
∑

[i1|i4]

(

d̃0;i1i2i3i4 + d̃2;i1i2i3i4(l.nǫ)
2 + d̃4;i1i2i3i4(l.nǫ)

4
) 1

Di1Di2Di3Di4

+
∑

[i1|i3]

(

c̃0;i1i2i3 + c̃7;i1i2i3(l.nǫ)
2
) 1

Di1Di2Di3

+
∑

[i1|i2]

(

b̃0;i1i2 + b̃9;i1i2(l.nǫ)
2
) 1

Di1Di2

+
∑

i1

ã0;i1
1

Di1

.

(3.5.2)

Upon integrating over l, the cut-constructible part of the amplitude is given by the
constant unitarity coefficients multiplied by the scalar master integrals. The remain-
ing integrals can be written in terms of the master integrals defined as in equation
(3.1.4)

∫

dDl

(2π)D
s2ǫ

Di1 ...Din

=− 2π(D − 4)ID+2
i1...in

; n = 1, 2, 3, 4, 5

∫

dDl

(2π)D
s4ǫ

Di1Di2Di3Di4

=4π2(D − 2)(D − 4)ID+4
i1i2i3i4

,

(3.5.3)

where s2ǫ = −∑D
i=5(l.ni)

2.
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Then the one-loop amplitude can be expressed as

AN =
∑

[i1|i5]
ẽ0;i1i2i3i4i5(−2π(D − 4)ID+2

i1i2i3i4i5
)

+
∑

[i1|i4]
d̃0;i1i2i3i4I

D
i1i2i3i4

+ d̃2;i1i2i3i4(−2π(D − 4)ID+2
i1i2i3i4

)

+ d̃4;i1i2i3i4(4π
2(D − 2)(D − 4)ID+4

i1i2i3i4
)

+
∑

[i1|i3]
c̃0;i1i2i3I

D
i1i2i3 + c̃7;i1i2i3(−2π(D − 4)ID+2

i1i2i3
)

+
∑

[i1|i2]
b̃0;i1i2I

D
i1i2

+ b̃9;i1i2(−2π(D − 4)ID+2
i1i2

) +
∑

i1

ã0;i1I
D
i1
.

(3.5.4)

In the limit D → 4 − 2ǫ 5, the scalar integrals may contain poles 1
ǫ2

and 1
ǫ
as well as

finite terms. The (D+2)- and (D+4)-dimensional scalar integrals multiply factors of
D − 4 = −2ǫ, resulting in terms that are finite + O(ǫ). For an NLO calculation, the
O(ǫ) terms can be dropped, since the limit ǫ → 0 is taken eventually. The integrals
ID+2
i1i2i3i4i5

and ID+2
i1i2i3i4

vanish in this limit. The remaining rational terms are

lim
D→4

4π2(D − 2)(D − 4)ID+4
i1i2i3i4

= −16π2

3
lim
D→4

−2π(D − 4)ID+2
i1i2i3

= −2π

lim
D→4

−2π(D − 4)ID+2
i1i2

= −4π
(

−m2
i1 +m2

i2

2
+

(qi1 − qi2)
2

6

)

.

(3.5.5)

The one-loop amplitude can then be written as

AN =
∑

[i1|i4]
d̃0;i1i2i3i4I

(4−2ǫ)
i1i2i3i4

+
∑

[i1|i3]
c̃0;i1i2i3I

(4−2ǫ)
i1i2i3

+
∑

[i1|i2]
b̃0;i1i2I

(4−2ǫ)
i1i2

+
∑

i1

ã0;i1I
(4−2ǫ)
i1

−
∑

[i1|i4]

16π2

3
d̃4;i1i2i3i4 −

∑

[i1|i3]
2πc̃7;i1i2i3

− 4π
∑

[i1|i2]

(

−m2
i1 +m2

i2

2
+

(qi1 − qi2)
2

6

)

b̃9;i1i2 .

(3.5.6)

All the scalar master integrals are computed using QCDloop [132]. This solves the
problem presented at the beginning of the chapter. To summarise the method: for
each unitarity coefficient in equation (3.4.1), put an appropriate number of prop-
agators on-shell by constructing loop momentum as in equation (3.4.8) with the
constraints of equation (3.4.10). Doing this for two different values of Ds obtains
the analytic continuation of the unitarity coefficients, and allows the rational part of
the amplitude to be calculated. The OPP equations (3.4.22), (3.4.26), (3.4.30) and
(3.4.31) are solved for the unitarity coefficients, and equation (3.4.1) is written in
terms of these coefficients and known scalar integrals, equation (3.5.6). The left-hand
sides of the OPP equations are found by computing products of tree-level ampli-
tudes. In the following chapter, I will discuss some of the details pertaining to these
computations.

5The limit of Ds, according to the FDH or HV scheme, has already been taken, see section 3.4.
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Chapter 4

Tree-Level Amplitudes

4.1 Introduction

In chapter 3, I discussed how to factorise a one-loop amplitude into a number of
tree-level amplitudes. In this chapter, I will discuss how to compute these tree-
level amplitudes. In section 4.2, I will discuss how to compute polarisation vectors
for fermions and bosons in Ds > 4 dimensions. In section 4.3, I will discuss the
Berends-Giele recursion relations [145], a technique for computing on-shell currents,
which is important for this implementation of the unitarity method. These relations
are connected to the concept of primitive amplitudes (see section 2.3), and the use
of these two concepts greatly increases the speed of the computation of one-loop
amplitudes.
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4.2 Higher-dimensional polarisations

It is necessary to compute the one-loop amplitude, and hence the tree-level am-
plitude into which it factorises via the unitarity method, in more than four di-
mensions (see section 3.2). A tree-level amplitude obtained from a unitarity cut
of a one-loop amplitude will have two particles that were put on-shell by the cut,
which have momenta in D dimensions and polarisations in Ds dimensions, with
{D,Ds} = {4, 4}, {5, 6}, {5, 8}. I shall call these “internal” particles, to distinguish
them from the external particles of the amplitude, whose momenta and polarisations
remain in four dimensions. For one-loop QCD amplitudes, internal particles may be
either gluons or quarks. Having determined their momenta as described in section
3.4, I now discuss how to find their polarisations.

4.2.1 Gluonic polarisations

The momentum of an external gluon in four dimensions can be parametrised as (see
e.g. [85])

pµ = E(1, sθcφ, sθsφ, cθ) (4.2.1)

where sθ = sin θ, cθ = cos θ etc.. The four-dimensional polarisation vector is

ǫ(λ)µ = (0, cθcφ − sgn(p0)iλsφ, cθsφ + sgn(p0)iλcφ,−sθ), (4.2.2)

where λ = ±1 labels the two polarisation states of the gluon, and the gauge condition
p.ǫ = 0 is satisfied1.

For the internal particles, the task of computing two vectors which are orthogonal
to a light-like momentum and which satify

∑Ds−2
i eiµ(l)e

i
ν(l) = −g

(Ds)
µν has already

been done, as these are precisely the vectors spanning the transverse space in the
Vermaseren-Van Neerven basis (see section 3.3). In D = Ds = 4 dimensions, the
same problem with a lightlike momentum encountered in section 3.4 is also present,
but this can be solved in an identical manner, by defining an auxiliary momentum and
then constructing two polarisations orthogonal to the momentum and its auxiliary. In
D = 5 dimensions, p20−p21−p22−p23 = p24, so a lightlike five-dimensional momentum is
equivalent to a spacelike four-dimensional one. Using this massive four-dimensional
momentum allows three four-dimensional transverse basis vectors n

(4)
1,2,3 to be con-

structed according to equations (3.3.9) and (3.3.10). For Ds = 6, the six-dimensional
polarisation vectors are

ǫ
(6)
1,2,3 =(n

(4)
1,2,3, 0, 0)

ǫ
(6)
4 =(0(4), 0, i).

(4.2.3)

For Ds = 8, it suffices to define two polarisation states

ǫ
(8)
+ = (0(6), i, 0); ǫ

(8)
− = (0(6), 0, i). (4.2.4)

1Since the gluons are always on-shell, only transverse polarisations are used, and hence ghost
fields do not enter into the calculation.
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4.2.2 Fermionic polarisations

In order to discuss the treatment of internal quarks, I must first define the Dirac
matrices in Ds dimensions [63, 85, 146]. They are defined through their algebra

{

Γµ
Ds
,Γν

Ds

}

= 2gµν12Ds/2, (4.2.5)

where µ, ν = 0, ..., Ds − 1 and 12Ds/2 is the identity matrix in the number of internal
dimensions, 2Ds/2. Increasing Ds to Ds + 2 doubles the internal dimensionality. The
Dirac matrices are defined recursively

Γ0
Ds+2 =

(

Γ0
Ds

0
0 Γ0

Ds

)

; Γi
Ds+2 =

(

Γi
Ds

0
0 Γi

Ds

)

;

ΓDs
Ds+2 =

(

0 Γ̂Ds

−Γ̂Ds 0

)

; ΓDs+1
Ds+2 =

(

0 iΓ̂Ds

iΓ̂Ds 0

)

,

(4.2.6)

where i = 1, ..., Ds − 1 and the matrices are defined by Γ̂Ds = iDs/2−1Γ0
Ds
Γ1
Ds
...ΓDs−1

Ds
,

so that
{

Γ̂Ds ,Γ
µ
Ds

}

= 0 for even Ds, with µ = 0, ..., Ds − 1.
The anticommutation relation of equation (4.2.5) in Ds+2 dimensions is inherited

from theDs-dimensional matrices for µ, ν = 0, ..., Ds−1. The definition of Γ̂Ds implies
{

Γµ
Ds+2,Γ

j
Ds+2

}

= 0 for µ = 0, ..., Ds − 1 and j = Ds, Ds + 1. Finally, it is clear that
{

Γj
Ds+2,Γ

k
Ds+2

}

= −2δjk12Ds/2+1 for j, k = Ds, Ds + 1. Thus, Γµ
Ds+2 satisfies the

anticommutation relation of equation (4.2.5).
The six- and eight-dimensional Dirac matrices can therefore be built recursively

from the four-dimensional ones, Γµ
4 ≡ γµ. These can be expressed in either the Weyl

or Dirac basis

γ0
Weyl =

(

02 12

12 02

)

; γi
Weyl =

(

02 −σi

σi 02

)

;

γ0
Dirac =

(

12 02

02 −12

)

; γi
Dirac =

(

02 σi

−σi 02

)

,

(4.2.7)

with 02 and 12 the 2 × 2 zero and identity matrices, and σi the Pauli matrices
(i = 1, 2, 3). The Weyl and Dirac bases can be related by a unitary transform γµ

Weyl =

U †γµ
DiracU where U = 1√

2

(

12 12

12 −12

)

.

The matrix γ5 = iγ0γ1γ2γ3 in four dimensions can be extended to higher dimen-
sions through its anticommutation properties [112]:

{

Γγ5
Ds
,Γµ

Ds

}

= 0; µ = 0, ..., 3
[

Γγ5
Ds
,Γµ

Ds

]

= 0; µ > 3.
(4.2.8)

This can be achieved recursively

Γγ5
Ds+2 =

(

Γγ5
Ds

0
0 Γγ5

Ds

)

, (4.2.9)
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with Γγ5
4 ≡ γ5 and

γ5
Weyl =

(

12 02

02 −12

)

; γ5
Dirac =

(

02 12

12 02

)

(4.2.10)

in four dimensions.
Quarks and antiquarks are represented by spinors u and v respectively. These

should satisfy the Dirac equation

(/p−m)u(p,m) = (/p+m)v(p,m) = 0, (4.2.11)

as well as the completeness relations

2Ds/2−1
∑

s

us(p,m)ūs(p,m) = /p+m,

2Ds/2−1
∑

s

vs(p,m)v̄s(p,m) = /p−m,

(4.2.12)

where s label the polarisations, and /p = pµΓ
µ in Ds dimensions. The two spinors of

external quarks of mass m can be written in the Weyl representation as

u(1)(p,m) = 1√
p+









p+

px + ipy
m
0









; u(2)(p,m) = 1√
p+









0
−m

px − ipy
−p+









, (4.2.13)

where p+ = p0 + pz. The spinors of the antiquarks can be written as v(1,2)(p,m) =
u(2,1)(p,−m). This set of spinors obeys both the Dirac equation (4.2.11) and the
completeness relation (4.2.12). If the quarks are massless, then the above spinors
reduce to helicity eigenstates, giving left- and right-handed quarks:

u(−)(p) = 1√
p+









0
0

px − ipy
−p+









, u(+)(p) = 1√
p+









p+

px + ipy
0
0









. (4.2.14)

Now the spinors of the antiquark are given by v(±)(p) = u(∓)(p). If the fermions move
in the z-direction, so that p0 = −pz , then the spinors are defined instead by

u−(p) =
√
2p0









0
0
1
0









; u+(p) =
√
2p0









0
1
0
0









. (4.2.15)

The internal massless quarks are constructed using an auxiliary vector n

u
(s)
Ds
(p) =

/p√
2p.n

χ
(s)
Ds

ū
(s)
Ds
(p) =χ̄

(s)
Ds

/p√
2p.n

,

(4.2.16)
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where
2Ds/2−1
∑

s=1

χ
(s)
Ds

× χ̄
(s)
Ds

= /n. (4.2.17)

Note that ū is defined here, rather than through ū = u†γ0. These spinors clearly
satisfy the massless Dirac equation, and

2Ds/2−1
∑

s

u(s)(p)ū(s)(p) =
/p/n/p

2p.n
= /p, (4.2.18)

where the second identity is obtained through the manipulation of gamma matrices.
Thus the completeness relation is satisfied. There is a large degree of flexibility in
this definition, stemming from the choice of χ(s). Defining

χ
(1)
4,x = 1√

2









1
1
0
0









; χ
(2)
4,x = 1√

2









0
0
1
−1









;

χ
(1)
4,y =

1√
2









1
i
0
0









; χ
(2)
4,y =

1√
2









0
0
1
−i









;

χ
(1)
4,z =









1
0
0
0









; χ
(2)
4,z =









0
0
0
−1









,

(4.2.19)

the auxiliary vectors have /nx,y,z =
1
2

(

Γ0−Γx,y,z

)

. Then whichever value of χx,y,z gives
the largest value for p.n is used, thereby avoiding the singularity if p.n = 0. This is
easily extended to higher dimensions by embedding

χ
(i)
Ds+2 =

(

χ
(i)
Ds

0

)

; χ
(2Ds/2−1+i)
Ds+2 =

(

0

χ
(i)
Ds

)

(4.2.20)

for i = 1, ..., 2Ds/2−1.
For massive internal quarks, the Dirac representation is used, with the spinors

u
(s)
Ds
(p,m) =

/p+m√
p0 +m

η
(s)
Ds

ū
(s)
Ds
(p,m) =η̄

(s)
Ds

/p+m√
p0 +m

.

(4.2.21)

In four dimensions, the auxiliary vectors are

η
(1)
4 =









1
0
0
0









; η
(2)
4 =









0
1
0
0









, (4.2.22)
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Figure 4.1: Diagrams of single resonant W -boson currents with an intermediate Z-boson or
photon. Current A is shown on the left; current B on the right.

and higher dimensional spinors are created as in equation (4.2.20).

4.2.3 Electroweak bosons

Since I will be calculating amplitudes with external W -bosons, Z-bosons and photons,
I need to define polarisation vectors for these as well. However, for one-loop QCD
amplitudes, the electroweak bosons only appear as four-dimensional external particles,
never internal ones.

The polarisation vector for a photon is the same as for an external gluon, equation
(4.2.2). In fact, this can be used for the transverse directions of the polarisation vector
of a massive particle too, and the longitudinal mode is

ǫ0(p,m) =
1

|p|m
(

|p|2, Epx, Epy, Epz
)

. (4.2.23)

However, it is better to use a polarisation vector which takes into account the leptonic
decay of the electroweak bosons. The decay of a final state W into massless leptons
W → ll̄ in the fixed-width approximation can be represented by a polarisation vector

ǫµW (pl, pl̄) =
−iū(pl)γ

µγ−v(pl̄)

sll̄ −m2
W + iΓWmW

, (4.2.24)

where mW and ΓW are the mass and width of the W -boson, and sll̄ = (pl + pl̄)
2. The

inclusion of γ− = 1−γ5
2

is due to left-handed coupling of the W -bosons to fermions.
The W -bosons may also be produced through an intermediate Z-boson or photon.

The intermediate boson can be regarded as an external particle with a polarisation
given by the following current:

ǫµV (pW+, pW−) =
−i

(pW+ + pW−)2

(

(pµW− − pµW+)ǫW+.ǫW−

+ (2pW+.ǫW−)ǫµW+ − (2pW−.ǫW+)ǫµW−

)

,

(4.2.25)

where pµW± and ǫµW± are the momenta and polarisations of the positive and negative
W -bosons as defined in equation (4.2.24). The propagator of the intermediate boson,
including its mass and width, will be explicitly included in the electroweak couplings,
see e.g. section 6.2. Finally, a current is required to account for the single resonant
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production of the W -bosons. This current corresponds to two Feynman diagrams,
shown in figure 4.1. These are

ǫµSR,A(ǫW , pW , pl, pl̄) =ū(pl)/ǫW
i(/pW + /pl)

(pW + pl)2
γµv(pl̄)

ǫµSR,B(ǫW , pW , pl, pl̄) =ū(pl)γ
µ
−i(/pW + /pl̄)

(pW + pl̄)
2
/ǫW v(pl̄),

(4.2.26)

with ǫW as in equation (4.2.24). The intermediate boson may be either a photon or a
Z-boson, and the lepton-antilepton pair ll̄ to which it couples may either be charged
leptons l+l−, or neutrinos νν̄. Thus there are four coupling factors

CZ
l+l− =

(

−1

2
+ sin2 θw

)

PZ(sZ); CZ
νν̄ =

1

2
PZ(sZ); (4.2.27)

Cγ
l+l− = − sin2 θwPγ(sγ); Cγ

νν̄ =0, (4.2.28)

where e is the electromagnetic coupling, θw is the weak mixing angle, and the weak
coupling gw has been factored out, as this will be added explicitly (see for example
section 5.2). The propagators for the Z-boson and photon are

PZ(sZ) =
−i

sZ −m2
Z + iΓZmZ

; Pγ(sγ) =
−i

sγ
(4.2.29)

with s the momentum-squared flowing through the Z-boson or photon,

sZ = sγ = (pW+ + pW−)2 = (pl+ + pl− + pν + pν̄)
2. (4.2.30)
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4.3 Berends-Giele recursion relations

Having defined the polarisations in higher dimensions, I now describe how to use
these to calculate tree-level amplitudes. I consider one of the internal particles in the
tree-level amplitude to be off-shell, and then calculate the current of the remaining
on-shell particles. The tree-level amplitude can be found by convoluting this current
with the polarisation vector of the off-shell particle. It turns out that the method
of calculating these currents, namely Berends-Giele recursion relations [145], is both
highly efficient and highly adaptable, and is ideal for the numerical computation of a
large variety of currents.

For my purposes, the off-shell particle will correspond to an internal particle which
has been cut according to the unitarity procedure. For NLO QCD calculations, this
means that the off-shell particle is either a quark, an antiquark, or a gluon. In addition
to this particle, there may be on-shell quarks, antiquarks and electroweak bosons
making up the “skeleton” of the current. This may be viewed as the minimal particle
content of the current. The skeleton may be “dressed” with an arbitrary number of
on-shell gluons, although for the calculations described in this work, no more than
three on-shell gluons will be needed in a given current. This dressing procedure
may be done recursively, and more complicated skeletons may be constructed out
of simpler ones. This allows the use of numerical caching in order to speed up the
calculation [147].

The currents are fully colour-ordered, meaning that the colour-charged off-shell
particles, as well as the colour-charged particles in the skeleton, have a fixed ordering.
The on-shell gluons have a fixed ordering with respect to the colour-charged skeleton
particles, as well as with respect to the other on-shell gluons. This is essential in
calculating colour-ordered primitive amplitudes. Colour-ordered Feynman rules [126],
shown in figure 4.2, are used to describe the interactions between quarks and gluons.
The electroweak bosons are not ordered.

= i√
2
γµ = − i√

2
γµ

µ µ

ρ

ν
µ

k

q

p

= i√
2
(gνρ(p− q)µ + gρµ(q − k)ν + gµν(k − p)ρ)

νµ

λ
ρ

= igµρgνλ − i
2(gµνgρλ + gµλgνρ)

Figure 4.2: Colour-ordered Feynman rules governing the coupling of a quark to a gluon, as
well as the gluon three- and four-point interactions.

I shall now define the nomenclature to be used in this section. All Berends-
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Giele currents are written in this font. Quarks are indicated by f, antiquarks by
f̄, gluons by g, and electroweak bosons by V. The off-shell particle is designated
first, followed by an underscore, and then the remainder of the skeleton, with the
electroweak bosons designated first, followed by the quarks and antiquarks as they are
ordered. In diagrams, the coloured particles have clockwise ordering. The arguments
of the functions are always the number of gluons between the coloured particles in
the skeleton, and (for most of the currents), the skeletal quarks. Other arguments,
specific to certain currents, are also used, and will be explained as they arise. When
currents are combined, they are treated essentially as off-shell quarks, antiquarks, or
gluons, and combined as such. I indicate the combination of currents with a ⊗, with
the following “dictionary” assigned:

ū(p,m)⊗ ǫµ(k) =
i√
2
ū(p,m)Pq(p,m)Pg(k)/ǫ(k);

u(p,m)⊗ ǫµ(k) = − i√
2
/ǫ(k)Pg(k)Pq(p,m)u(p,m);

ǫµ(k)⊗ ū(p,m) = − i√
2
ū(p,m)Pq(p,m)Pg(k)/ǫ(k);

ǫµ(k)⊗ u(p,m) =
i√
2
/ǫ(k)Pg(k)Pq(p,m)u(p,m);

ū2(p2, m2)⊗ u1(p1, m1) =
i√
2
ū2(p2, m2)Pq(p2, m2)Pq(p1, m1)u1(p1, m1)

ǫν1(k1)⊗ ǫρ2(k2) =
i√
2

(

ǫ1.ǫ2(k1 − k2)
µ + 2(k2.ǫ1)ǫ

µ
2 − 2(k1.ǫ2)ǫ

µ
1

)

Pg(k1)Pg(k2);

ǫν1(k1)⊗ ǫλ2(k2)⊗ ǫρ3(k3) = i
(

ǫµ2 (ǫ1.ǫ3)−
1

2

(

ǫµ1 (ǫ2.ǫ3) + ǫµ3 (ǫ1.ǫ2)
)

)

Pg(k1)Pg(k2)Pg(k3);

ū(p,m)⊗ V µ = −iū(p,m)Pq(p,m) /V ;

V µ ⊗ u(p,m) = −i /V Pq(p,m)u(p,m),

(4.3.1)

where ū refers to a current generated by an off-shell quark (f ...), u refers to a current
generated by an off-shell antiquark (̄f ...), ǫµ refers to a current generated by an off-
shell gluon (g ...), and V µ refers to the polarisation vector of an electroweak boson.
The quark and gluon propagators are

Pq(p,m) =
i(/p +m)

p2 −m2
; Pg(k) =

−i

k2
. (4.3.2)

Currents with no electroweak bosons will be described first, followed by currents with
one and then two electroweak bosons.

4.3.1 Currents with no electroweak bosons

g (n)
This current contains one off-shell gluon and no skeleton at all. It is non-zero only
when there are also on-shell gluons. If there is only one on-shell gluon, the skele-
ton is simply the polarisation vector of this gluon. More on-shell gluons are added
recursively:
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Figure 4.3: Diagrammatic representation of the current g with three on-shell gluons. The
off-shell gluon is indicated by the solid circle.

g (1 : n) =

n−1
∑

r1=1

(

g (1 : r1)⊗ g (r1 + 1 : n)

+

n−1
∑

r2=r1+1

g (1 : r1)⊗ g (r1 + 1 : r2)⊗ g (r2 + 1 : n)
)

.

(4.3.3)

In order to simplify the notation, I will write only the number of on-shell gluons as
the argument for the current. The labels of the gluons are understood from the colour
ordering. Thus, the above recursion relation becomes

g (n) =

n−1
∑

r1=1

(

g (r1)⊗ g (n− r1) +

n−1
∑

r2=r1+1

g (r1)⊗ g (r2 − r1)⊗ g (n− r2)
)

. (4.3.4)

In the first term on the right-hand side, the first current includes the first r1 gluons, i.e.
those labeled 1, ..., r1, while the second current includes the remaining n− r1 gluons,
which are understood to be labeled r1 + 1, ..., n. The second term on the right-hand
side has the first r1 gluons, labeled 1, ..., r1, in the first current. The r2 − r1 gluons
labeled r1 + 1, ..., r2 are in the second current, and the final n − r2 gluons (labeled
r2+1, ..., n) are in the final current. This notation is purely for convenience, and will
be used throughout.

As an example, consider the current g (3), which has three on-shell gluons in
addition to the off-shell one. Written in the form of equation (4.3.3), this current is
constructed as:

g (1 : 3) = g (1 : 1)⊗ g (2 : 3) + g (1 : 2)⊗ g (3 : 3) + g (1 : 1)⊗ g (2 : 2)⊗ g (3 : 3).
(4.3.5)

Written in the form of equation (4.3.4), the current is:

g (3) = g (1)⊗ g (2) + g (2)⊗ g (1) + g (1)⊗ g (1)⊗ g (1). (4.3.6)

In the first term, the first current g (1) contains the first on-shell gluon g1. The other
current g (2) contains the next two on-shell gluons, g2 and g3. In the second term,
g (2) contains g1 and g2 with g (1) containing g3. In the final term, the three currents
g (1) contain g1, g2 and g3 respectively. A diagrammatic representation is shown in
figure 4.3, with each term corresponding to a diagram.
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f f̄(q̄2; n1, n2)
This current contains an off-shell quark and an on-shell antiquark forming a single
quark line, with n1 gluons to its left, labeled 1, ..., n1, and n2 gluons to its right,
labeled n1+1, ..., n1+n2. The skeleton is simply the spinor of the on-shell antiquark.
The current vanishes if the flavours of the quark and antiquark are different, since
this would violate charge conservation. Gluons are added as:

f f̄(n1, n2) =

n1
∑

r1=1

g (r1)⊗ f f̄(n1 − r1, n2) +

n2−1
∑

r2=0

f f̄(n1, r2)⊗ g (n2 − r2), (4.3.7)

with the quark labels understood.
As an example, the current

f f̄(1, 2) = g (1)⊗ f f̄(0, 2) + f f̄(1, 0)⊗ g (2) + f f̄(1, 1)⊗ g (1), (4.3.8)

is shown in figure 4.4. The first term generates the first two diagrams on the top row,
and the second term generates the third diagram on this row. The two diagrams on
the bottom row originate from the final term.

1

2

3

1

3

2

1

2

3

1

2

3

1
2

3

q̄ q̄

q̄ q̄

q̄

Figure 4.4: Diagrammatic representation of the current f f̄(q̄2, n1 = 1, n2 = 2). The off-shell
quark is indicated by the solid circle.

f̄ f(q1; n1, n2)

This is the “conjugate current” to f f̄, and consists of an off-shell antiquark and an
on-shell quark. The skeleton is the quark spinor. The recursion relation is the same
as for the previous current:

f̄ f(n1, n2) =

n1
∑

r1=1

g (r1)⊗ f̄ f(n1 − r1, n2) +

n2−1
∑

r2=0

f̄ f(n1, r2)⊗ g (n2 − r2), (4.3.9)

where again there are n1 gluons to the left of the quark line, and n2 gluons to the right.
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g ff̄(q1, q̄2, ; n1, n2, n3)
This current consists of an off-shell gluon and an on-shell antiquark-quark pair. The
skeleton is thus constructed as

g ff̄(q1, q̄2; 0, 0, 0) = f̄ f(q1; 0, 0)⊗ f f̄(q̄2; 0, 0). (4.3.10)

There are n1 gluons between the off-shell gluon and the quark, n2 gluons between

n1

n2

n3

q

q̄

Figure 4.5: Diagrammatic representation of the current g ff̄(q1, q̄2, ; n1, n2, n3). The small
dots indicate where n1, n2 and n3 on-shell gluons may be added.

the quark and antiquark, and n3 gluons between the antiquark and off-shell gluon
(see figure 4.5). Additional on-shell gluons are added as

g ff̄(q1, q̄2; n1, n2, n3) =
n1
∑

r1=1

(

g (r1)⊗ g ff̄(n1 − r1, n2, n3) +

n3−1
∑

r3=0

g ff̄(n1, n2, r3)⊗ g (n3 − r3)
)

+

n1−1
∑

r1=1

n1
∑

r2=r1+1

g (r1)⊗ g (r2 − r1)⊗ g ff̄(n1 − r2, n2, n3)

+

n1
∑

r1=1

n3−1
∑

r3=0

g (r1)⊗ g ff̄(n1 − r1, n2, r3)⊗ g (n3 − r3)

+

n3−2
∑

r3=0

n3−1
∑

r4=r3+1

g ff̄(n1, n2, r3)⊗ g (r4 − r3)⊗ g (n3 − r4)
)

+

n2
∑

r2=0

f̄ f(q1; n1, r2)⊗ f f̄(q̄2; n2 − r2, n3).

(4.3.11)

g f̄f(q̄1, q2; n1, n2, n3)

This is the conjugate current to g ff̄. The skeleton is constructed as

g f̄f(q̄1, q2) = f f̄(q̄1)⊗ f̄ f(q2), (4.3.12)

with the gluon labels again understood to be zero. This is the same as the skeleton
of g ff̄ with the replacements q1 → q̄1, q̄2 → q2 and f̄ ↔ f. The recursive addition
of on-shell gluons can likewise be obtained from equation (4.3.11) under the same
replacements.
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f f̄f f̄(q̄1, q2, q̄3; n1, n2, n3, n4)
The skeleton of this current consists of two quark-antiquark lines. The off-shell quark
may be on the same line as either antiquark q̄1 or q̄3. I shall refer to these as “s”
and “t” channels, respectively. The flavours of the quarks can be used to determine
whether the current is in the s-channel, t-channel or both. The skeleton is constructed
by

f f̄f f̄(q̄1, q2, q̄3; 0, 0, 0, 0) =f f̄(q̄1, 0, 0)⊗ g ff̄(q2, q̄3; 0, 0, 0)

+g f̄f(q̄1, q2; 0, 0, 0)⊗ f f̄(q̄3, 0, 0),
(4.3.13)

with the first term corresponding to the s-channel current and the second correspond-
ing to the t-channel current. Additional gluons, distributed between the skeleton as
shown in figure 4.6, are given by

f f̄f f̄(q̄1, q2, q̄3; n1, n2, n3, n4) =

+

n1
∑

r1=1

g (r1)⊗ f f̄f f̄(n1 − r1, n2, n3, n4)

+

n2
∑

r2=0

f f̄(q̄1, n1, r2)⊗ g ff̄(q2, q̄3; n2 − r2, n3, n4)

+

n3
∑

r3=0

g f̄f(q̄1, q2; n1, n2, r3)⊗ f f̄(q̄3; n3 − r3, n4)

+

n4−1
∑

r4=0

f f̄f f̄(q̄1, q2, q̄3; n1, n2, n3, r4)⊗ g (n4 − r4).

(4.3.14)

The currents f f̄f f̄s and f f̄f f̄t can also be defined, in which only the terms in the s-
or t-channels appear. The former is constructed using only the first term of equation
(4.3.13) and omitting the third term of the recursion relation, equation (4.3.14). The
latter is constructed using only the second term of equation (4.3.13) and omitting the
second term of equation (4.3.14). In both cases, the recursion relation uses f f̄f f̄s,t in
place of f f̄f f̄. Additionally, the conjugate current f̄ f f̄f can be defined by replacing
f ↔ f̄ in this current.

q̄1 q2

q̄3

n4

n1

n2

n3

q̄1

n4

q̄3
n3

q2

n2

n1

Figure 4.6: Representation of the current f f̄f f̄(q̄1, q2, q̄3; n1, n2, n3, n4). The s-channel is
shown on the left; the t-channel on the right. On-shell gluons may be added as indicated
by n1, n2, n3 and n4.
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g f1f̄1f2f̄2(q1, q̄2, q3, q̄4; n1, n2, n3, n4, n5)
This current consists of an off-shell gluon and two on-shell quark-antiquark lines com-
prising the skeleton. The quark flavours are such that q1 and q̄2 must make up one
of these lines, with q3 and q̄4 making up the other line, as indicated by the subscripts
in the name of the current. The skeleton is constructed by

g f1f̄1f2f̄2(q1, q̄2, q3, q̄4) =

g ff̄(q1, q̄2)⊗ g ff̄(q3, q̄4) + f̄ f(q1)⊗ f f̄f f̄s(q̄2, q3, q̄4)

+f̄ f f̄ft(q1, q̄2, q3)⊗ f f̄(q̄4).

(4.3.15)

These three configurations are shown in figure 4.7. The additional gluons are added
via

g f1 f̄1f2f̄2(q1, q̄2, q3, q̄4; n1, n2, n3, n4, n5) =
n1
∑

r1=1

n3
∑

r3=0

g (r1)⊗ g ff̄(q1, q̄2; n1 − r1, n2, r3)⊗ g ff̄(q3, q̄4; n3 − r3, n4, n5)

+

n3−1
∑

r3=0

n3
∑

r4=r3+1

g ff̄(q1, q̄2; n1, n2, r3)⊗ g (r4 − r3)⊗ g ff̄(q3, q̄4; n3 − r4, n4, n5)

+

n5−1
∑

r5=0

n3
∑

r3=0

g ff̄(q1, q̄2; n1, n2, r3)⊗ g ff̄(q3, q̄4; n3 − r3, n4, r5)⊗ g (n5 − r5)

+

n1−1
∑

r1=1

n1
∑

r2=r1+1

g (r1)⊗ g (r2 − r1)⊗ g f1 f̄1f2f̄2(n1 − r2, n2, n3, n4, n5)

+

n3−1
∑

r3=0

n3
∑

r4=r3+1

g ff̄(q1, q̄2; n1, n2, r3)⊗ g (r4 − r3)⊗ g ff̄(q3, q̄4; n3 − r4, n4, n5)

+

n5−2
∑

r5=0

n5−1
∑

r6=r5+1

g f1f̄1f2f̄2(n1, n2, n3, n4, r5)⊗ g (r6 − r5)⊗ g (n5 − r6)

+

n1
∑

r1=1

g (r1)⊗ g f1f̄1f2f̄2(n1 − r1, n2, n3, n4, n5)

+

n3
∑

r3=0

g ff̄(q1, q̄2; n1, n2, r3)⊗ g ff̄(q3, q̄4; n3 − r3, n4, n5)

+

n5−1
∑

r5=0

g f1f̄1f2f̄2(n1, n2, n3, n4, r5)⊗ g (n5 − r5)

+

n2
∑

r2=0

f̄ f(q1; n1, r2)⊗ f f̄f f̄s(q̄2, q3, q̄4; n2 − r2, n3, n4, n5)

+

n4
∑

r4=0

f̄ f f̄ft(q1, q̄2, q3; n1, n2, n3, r4)⊗ f f̄(q̄4), n4 − r4, n5).

(4.3.16)
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The last two terms correspond to attaching a gluon current directly to the first and
second quark line, respectively. All the other terms add gluons to the off-shell gluon.
This can be through a four-gluon coupling, as with the first six terms, or through a
three-gluon coupling, as with the seventh, eighth and ninth terms.

q̄2 q3

q̄4

n5

n2

n3

n4

q1 q1 q1

q̄2 q̄2q3 q3

q̄4 q̄4

n4n1

n1

n1

n2 n2

n3 n3

n4 n4

n5

n5

q3 q̄4

q1

n3
n4

n1

q̄2 q̄2

q3 q̄4

q1

n1

n3

n4

n5

n2

n2

n5

Figure 4.7: Representations of the currents g f1f̄1f2 f̄2(q1, q̄2, q3, q̄4; n1, n2, n3, n4, n5) (top)
and g f1f̄2f2f̄1(q1, q̄2, q3, q̄4; n1, n2, n3, n4, n5) (bottom).

.

g f1f̄2f2f̄1(q1, q̄2, q3, q̄4; n1, n2, n3, n4, n5)
This current is similar to the previous one, but with the first quark-antiquark line
being made up from q1 and q̄4, and the second made up from q3 and q̄2. This skeleton
is shown in figure 4.7, and is constructed by

g f1f̄2f2f̄1(q1, q̄2, q3, q̄4; 0, 0, 0, 0, 0) =f̄ f(q1)⊗ f f̄f f̄t(q̄2, q3, q̄4)

+f̄ f f̄fs(q1, q̄2, q3)⊗ f f̄(q̄4);
(4.3.17)
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while additional gluons are added according to

g f1f̄2f2 f̄1(q1, q̄2, q3, q̄4; n1, n2, n3, n4, n5) =
n1−1
∑

r1=1

n1
∑

r2=r1+1

g (r1)⊗ g (r2 − r1)⊗ g f1 f̄2f2f̄1(n1 − r2, n2, n3, n4, n5)

+

n1
∑

r1=1

n5−1
∑

r5=0

g (r1)⊗ g f1 f̄2f2f̄1(n1 − r2, n2, n3, n4, r5)⊗ g (n5 − r5)

+

n5−2
∑

r5=0

n5−1
∑

r6=r5+1

g f1f̄2f2f̄1(n1, n2, n3, n4, r5)⊗ g (r6 − r5)⊗ g (n5 − r6)

+

n1
∑

r1=1

g (r1)⊗ g f1f̄2f2f̄1(n1 − r1, n2, n3, n4, n5)

+

n5−1
∑

r5=0

g f1 f̄2f2f̄1(n1, n2, n3, n4, r5)⊗ g (n5 − r5)

+

n2
∑

r2=0

f̄ f(q1; n1, r2)⊗ f f̄f f̄t(q̄2, q3, q̄4; n2 − r2, n3, n4, n5)

+

n4
∑

r4=0

f̄ f f̄fs(q1, q̄2, q3; n1, n2, n3, r4)⊗ f f̄(q̄4), n4 − r4, n5).

(4.3.18)

f1 f̄1f2f̄2f3f̄3(q̄1, q2, q̄3, q4, q̄5; n1, n2, n3, n4, n5, n6)
The skeleton of this current includes three quark-antiquark lines. The subscripts
indicate that these are formed by the off-shell quark and q̄1, q2 and q̄3, and q4 and q̄5.
The skeleton is given by

f1 f̄1f2f̄2f3f̄3(q̄1, q2, q̄3, q4, q̄5) =f f̄(q̄1)⊗ g f1f̄1f2 f̄2(q2, q̄3, q4, q̄5)

+f f̄f f̄s(q̄1, q2, q̄3)⊗ g ff̄(q4, q̄5),
(4.3.19)

as shown in figure 4.8. The recursion relations are

f1 f̄1f2f̄2f3 f̄3(q̄1, q2, q̄3, q4, q̄5; n1, n2, n3, n4, n5, n6) =
n2
∑

r2=0

f f̄(q̄1; n1, r2)⊗ g f1 f̄1f2f̄2(q2, q̄3, q4, q̄5; n2 − r2, n3, n4, n5, n6)

+

n1
∑

r1=1

g (r1)⊗ f1 f̄1f2f̄2f3 f̄3(n1 − r1, n2, n3, n4, n5, n6)

+

n4
∑

r4=0

f f̄f f̄s(q̄1, q2, q̄3; n1, n2, n3, r4)⊗ g ff̄(q4, q̄5; n4 − r4, n5, n6)

+

n6−1
∑

r6=0

f1 f̄1f2f̄2f3f̄3(n1, n2, n3, n4, n5, r6)⊗ g (n6 − r6).

(4.3.20)
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Figure 4.8: Representation of the current f1 f̄1f2f̄2f3f̄3(q̄1, q2, q̄3, q4, q̄5; n1, n2, n3, n4, n5, n6).

f1 f̄2f2f̄1f3f̄3(q̄1, q2, q̄3, q4, q̄5; n1, n2, n3, n4, n5, n6)
This current is similar to the previous one, but with the off-shell quark forming a
quark-antiquark line with q̄3, and remaining two lines being formed with q2 and q̄1
and q4 and q̄5. The skeleton is given by

f1 f̄2f2f̄1f3f̄3(q̄1, q2, q̄3, q4, q̄5) =g f̄f(q̄1, q2)⊗ f f̄f f̄s(q̄3, q4, q̄5)

+f f̄f f̄t(q̄1, q2, q̄3)⊗ g ff̄(q4, q̄5),
(4.3.21)

while the recursion relation is

f1 f̄2f2f̄1f3f̄3(q̄1, q2, q̄3, q4, q̄5; n1, n2, n3, n4, n5, n6) =
n3
∑

r3=0

g f̄f(q̄1, q2; n1, n2, r3)⊗ f f̄f f̄s(q̄3, q4, q̄5; n3 − r3, n4, n5, n6)

+

n4
∑

r4=0

f f̄f f̄t(q̄1, q2, q̄3; n1, n2, n3, r4)⊗ g ff̄(q4, q̄5; n4 − r4, n5, n6)

+

n1
∑

r1=1

g (r1)⊗ f1 f̄2f2f̄1f3f̄3(n1 − r1, n2, n3, n4, n5, n6)

+

n6−1
∑

r6=0

f1 f̄2f2 f̄1f3f̄3(n1, n2, n3, n4, n5, r6)⊗ g (n6 − r6).

(4.3.22)

f1 f̄1f2f̄3f3f̄2(q̄1, q2, q̄3, q4, q̄5; n1, n2, n3, n4, n5, n6)
This current has quark-antiquark lines formed by q2 and q̄5, q4 and q̄3, and by q̄1 and
the off-shell quark. The skeleton is

f1 f̄1f2 f̄3f3f̄2(q̄1, q2, q̄3, q4, q̄5) = f f̄(q̄1)⊗ g f1f̄2f2f̄1(q2, q̄3, q4, q̄5), (4.3.23)
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Figure 4.9: Currents f1 f̄2f2f̄1f3f̄3(q̄1, q2, q̄3, q4, q̄5; n1, n2, n3, n4, n5, n6) (top) and
f1 f̄1f2f̄3f3f̄2(q̄1, q2, q̄3, q4, q̄5; n1, n2, n3, n4, n5, n6) (bottom).

while the recursion relation is

f1 f̄1f2f̄3f3f̄2(q̄1, q2, q̄3, q4, q̄5; n1, n2, n3, n4, n5, n6) =
n1
∑

r1=1

g (r1)⊗ f1 f̄1f2f̄3f3f̄2(n1 − r1, n2, n3, n4, n5, n6)+

n6−1
∑

r6=0

f1 f̄1f2f̄3f3f̄2(n1, n2, n3, n4, n5, r6)⊗ g (n6 − r6)+

n2
∑

r2=0

f f̄(q̄1; n1, r2)⊗ g f1f̄2f2f̄1(q2, q̄3, q4, q̄5; n2 − r2.n3, n4, n5, n6).

(4.3.24)

The above two six-quark currents are shown in figure 4.9.

4.3.2 Currents with one electroweak boson

f Vf̄(q̄1; n1, n2)
The skeleton consists of an on-shell antiquark and electroweak (EW) boson. The EW
boson is not colour-charged and therefore is not ordered: one needs to consider all
possible insertions of it relative to the on-shell gluons. Again, the number of gluons
to the left and to the right of the quark-antiquark line are denoted as n1 and n2

respectively. The skeleton is simply the coupling of the electroweak boson to the
antiquark

f Vf̄(q̄2,V) = f f̄(q̄2)⊗ V. (4.3.25)
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Figure 4.10: Current f Vf̄(q̄1, n1 = 1, n2 = 1). Note that all insertions of the electroweak
boson relative to the coloured particles are allowed.

The recursion relation is

f Vf̄(n1, n2) =

n1
∑

r1=1

g (r1)⊗ f Vf̄(n1 − r1, n2) + f f̄(q̄2; n1, n2)⊗ V

+

n2−1
∑

r2=0

f Vf̄(n1, r2)⊗ g (n2 − r2).

(4.3.26)

As an example, the current

f Vf̄(1, 1) = g (1)⊗ f Vf̄(0, 1) + f Vf̄(1, 0)⊗ g (1) + f f̄(1, 1)⊗ V (4.3.27)

is shown in figure 4.10. From this, the advantage of Berends-Giele recursion relations
is plain: this one current encodes the equivalent information of six Feynman diagrams.
The conjugate current f̄ Vf can be defined as before, with the only modification being
that the EW boson should now couple to an on-shell quark.

f Vf̄∗(q̄1; n, fp, fg)
This current is similar to the above, but the insertion of the electroweak boson is
restricted to be either before or after a “reference” gluon. For this reason, this cur-
rent is called a “restricted” current. The argument fg defines which gluon is used
as the reference, and the argument fp gives its position along the quark-antiquark
line, including both electroweak bosons and gluons. Thus, fg = fp implies that the
electroweak boson comes after the reference gluon, whereas fp = fg + 1 implies that
the electroweak boson comes first. The gluons are always to the left of the quark-
antiquark line, so there is only one argument n to fix the number of gluons. The
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skeleton is the same as for f Vf̄ , but the recursion relation becomes

f Vf̄∗(q̄1; n, fp, fg) =δfp,fg

(

fg−1
∑

r1=1

g (r1)⊗ f Vf̄∗(n− r1, fp − r1, fg − r1)

+

n
∑

r1=fg

g (r1)⊗ f Vf̄(n− r1, 0)
)

+δfp−1,fg

(

f f̄(n, 0)⊗ V

+

fg−1
∑

r1=1

g (r1)⊗ f Vf̄∗(n− r1, fp − r1, fg − r1)
)

.

(4.3.28)

This recursion relation will be used extensively in chapter 7.

g Vff̄(q1, q̄2; n1, n2, n3)
The skeleton for this current is

g Vff̄(q1, q̄2) = f̄ Vf(q1)⊗ f f̄(q̄2) + f̄ f(q1)⊗ f Vf̄(q̄2). (4.3.29)

The recursion relation is similar to those for g ff̄:

g Vff̄(q1, q̄2; n1, n2, n3) =

+

n1
∑

r1=1

(

g (r1)⊗ g Vff̄(n1 − r1, n2, n3)

+

n3−1
∑

r3=0

g Vff̄(n1, n2, r3)⊗ g (n3 − r3)
)

+

n1−1
∑

r1=1

n1
∑

r2=r1+1

g (r1)⊗ g (r2 − r1)⊗ g Vff̄(n1 − r2, n2, n3)

+

n1
∑

r1=1

n3−1
∑

r3=0

g (r1)⊗ g Vff̄(n1 − r1, n2, r3)⊗ g (n3 − r3)

+

n3−2
∑

r3=0

n3−1
∑

r4=r3+1

g Vff̄(n1, n2, r3)⊗ g (r4 − r3)⊗ g (n3 − r4)

+

n2
∑

r2=0

(

f̄ Vf(q1; n1, r2)⊗ f f̄(q̄2; n2 − r2, n3)

+f̄ f(q1; n1, r2)⊗ f Vf̄(q̄2; n2 − r2, n3)
)

,

(4.3.30)

and similarly the conjugate current g Vf̄f can be defined.

61



f Vf̄f f̄(q̄1, q2, q̄3; sw; n1, n2, n3, n4)
The skeleton of this current consists of two quark-antiquark lines and an EW boson.
The new argument sw controls which quark-antiquark line the EW boson will couple
to. Additionally, it is possible to specify a flavour of quark to which the EW boson
cannot couple (by definition). Contributions to the current involving quarks of this
flavour coupling to the EW bosons are zero. The skeleton depends on the value of
sw:

f Vf̄f f̄(q̄1, q2, q̄3) =

(

f Vf̄(q̄1)⊗ g ff̄(q2, q̄3) + f f̄f f̄ ⊗ V

)

δsw1

+

(

g Vf̄f(q̄1, q2)⊗ f f̄(q̄3) + f Vf̄(q̄1)⊗ g ff̄(q2, q̄3)

)

δsw2

+

(

f f̄(q̄1)⊗ g Vff̄(q2, q̄3) + g f̄f(q̄1, q2)⊗ f Vf̄(q̄3)

)

δsw3

+

(

g f̄f(q̄1, q2)⊗ f Vf̄(q̄3) + f f̄f f̄ ⊗ V

)

δsw4.

(4.3.31)

As can be seen in figure 4.11, the different values of sw allow both s- and t-channel
currents. However, the flavours of the quarks can be used to eliminate the contri-
butions from one of these channels. As an example, if the off-shell quark is a top,
and the on-shell quarks are bottom, top and top with sw = 1, then it is clear that
the t-channel contribution will vanish, since the line formed by q̄1 and q2 will violate
charge conservation.

Additional gluons are given by

f Vf̄f f̄(q̄1, q2, q̄3; n1, n2, n3, n4) =
n1
∑

r1=1

g (r1)⊗ f Vf̄f f̄(n1 − r1, n2, n3, n4)

+

n4−1
∑

r4=0

f Vf̄f f̄(q̄1, q2, q̄3; n1, n2, n3, r4)⊗ g (n4 − r4)

+
(

δsw1 + δsw2
)

n2
∑

r2=0

f Vf̄(q̄1, n1, r2)⊗ g ff̄(q2, q̄3; n2 − r2, n3, n4)

+
(

δsw1 + δsw4
)

f f̄f f̄(n1, n2, n3, n4)⊗ V

+
(

δsw3 + δsw4
)

n3
∑

r3=0

g f̄f(q̄1, q2; n1, n2, r3)⊗ f Vf̄(q̄3, n3 − r3, n4)

+
(

δsw2
)

n3
∑

r3=0

g Vf̄f(q̄1, q2; n1, n2, r3)⊗ f f̄(q̄3, n3 − r3, n4)

+
(

δsw3
)

n2
∑

r2=0

f f̄(q̄1, n1, r2)⊗ g Vff̄(q2, q̄3; n2 − r2, n3, n4).

(4.3.32)
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The conjugate current f̄ Vff̄f can be defined analogously.
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Figure 4.11: Current f Vf̄ff̄(q̄1, q2, q̄3; sw; n1, n2, n3, n4), for sw = 1 (top row), sw = 2 (second
row), sw = 3 (third row) and sw = 4 (bottom row).

f Vf̄f f̄t(q̄1, q2, q̄3; sw; n1, n2, n3, n4)
This current is similar to the above, but in the t-channel, i.e. the two quark-antiquark
lines are always made up of q̄1 and q2, and the off-shell quark and q̄3. Note that for
sw = 1 and sw = 3, this has the effect of keeping the electroweak boson on one side
of the gluon propagator between the quark-antiquark lines. The skeleton is

f Vf̄f f̄t(q̄1, q2, q̄3) =

(

f f̄f f̄t ⊗ V

)

δsw1 +

(

g Vf̄f(q̄1, q2)⊗ f f̄(q̄3)

)

δsw2+

(

g f̄f(q̄1, q2)⊗ f Vf̄(q̄3)

)

δsw3+

(

g f̄f(q̄1, q2)⊗ f Vf̄(q̄3) + f f̄f f̄t ⊗ V

)

δsw4.

(4.3.33)
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The recursion relation is

f Vf̄f f̄t(q̄1, q2, q̄3; n1, n2, n3, n4) =

+

n1
∑

r1=1

g (r1)⊗ f Vf̄f f̄t(n1 − r1, n2, n3, n4)

+

n4−1
∑

r4=0

f Vf̄f f̄t(q̄1, q2, q̄3; n1, n2, n3, r4)⊗ g (n4 − r4)

+
(

δsw1 + δsw4
)

f f̄f f̄t(n1, n2, n3, n4)⊗ V

+
(

δsw3 + δsw4
)

n3
∑

r3=0

g f̄f(q̄1, q2; n1, n2, r3)⊗ f Vf̄(q̄3, n3 − r3, n4)

+
(

δsw2
)

n3
∑

r3=0

g Vf̄f(q̄1, q2; n1, n2, r3)⊗ f f̄(q̄3, n3 − r3, n4).

(4.3.34)

g Vf1 f̄1f2f̄2(q1, q̄2, q3, q̄4; sw)
The skeleton of this current consists of an off-shell gluon and an on-shell EW boson
with two quark-antiquark lines. Quark q1 and antiquark q̄2 make up one of these
lines, q3 and q̄4 make up the other. This is achieved by using different flavours for
these pairs. The argument sw again gives the location of the EW boson: for our
needs, it suffices to consider it either between q1 and q̄2 (corresponding to sw = 2)
or between q3 and q̄4 (corresponding to sw = 4). Including other values of sw would
not be difficult but is not necessary for the calculations in this work. Similarly, it is
not necessary to dress this current with on-shell gluons, so only the skeleton need be
defined. It is

g Vff̄f f̄(q1, q̄2, q3, q̄4; sw) =
(

f̄ f(q1)⊗ f Vf̄f f̄(q̄2, q3, q̄4; sw = 1) + f̄ Vf(q1)⊗ f f̄f f̄(q̄2, q3, q̄4)

+f̄ Vff̄f(q1, q̄2, q3; sw = 2)⊗ f f̄(q̄4) + g Vff̄(q1, q̄2)⊗ g ff̄(q3, q̄4)

)

δsw2

+

(

f̄ f(q1)⊗ f Vf̄f f̄(q̄2, q3, q̄4; sw = 3) + f̄ Vff̄f(q1, q̄2, q3; sw = 4)⊗ f f̄(q̄4)

+f̄ f f̄f(q1, q̄2, q3)⊗ f Vf̄(q̄4) + g ff̄(q1, q̄2)⊗ g Vff̄(q3, q̄4)

)

δsw4.

(4.3.35)

Diagrammatically, this current would look like figure 4.7 dressed with an electroweak
boson either between q1 and q̄2 (if sw = 2) or between q3 and q̄4 (if sw = 4).

g Vff̄f f̄ 1(q1, q̄2, q3, q̄4)
This current is similar to the one above, but with some unusual restrictions. If one of
the quark-antiquark lines is made up of q1 and q̄2, then the EW boson will attach to
this line only. On the other hand, if one of the quark-antiquark lines is made up of
q1 and q̄4, the the EW boson attaches to this one only, with the additional restriction
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that it is always on one side of the gluon propagator: the gluon propagator should
be between the EW boson and q̄4. The flavours of the quarks should always be such
that only one of these options is realised. This unusual configuration is shown in
figure 4.12. Again, the addition of on-shell gluons will not be described, but, as for
the previous current, making these extensions would not be difficult.

q̄2
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q̄2

q3

q3 q3

q̄4q3q3

q̄4 q̄4

q1

q̄4q̄4

V

V

V

V

V

q1 q1

q1 q1 q̄2

Figure 4.12: Current g Vff̄f f̄ 1(q1, q̄2, q3, q̄4). The quark flavours are such that either the
top or bottom row, not both, contribute to the current.

g Vff̄f f̄ 1(q1, q̄2, q3, q̄4) =

f̄ f(q1)⊗ f Vf̄f f̄t(q̄2, q3, q̄4; sw = 1) + f̄ Vf(q1)⊗ f f̄f f̄t(q̄2, q3, q̄4)

+f̄ Vff̄f(q1, q̄2, q3; sw = 2)⊗ f f̄(q̄4).

(4.3.36)

Note that in the final term, the flavours of the quarks determine the formation of the
quark-antiquark lines.

f1 Vf̄1f2 f̄2f3f̄3(q̄1, q2, q̄3, q4, q̄5; sw)
The skeleton of this current includes three quark-antiquark lines and an EW boson.
The position of the boson is determined by sw, and the quark-antiquark lines are
formed by the off-shell quark and q̄1, q2 and q̄3, and q4 and q̄5. The skeleton is given
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by

f1 Vf̄1f2f̄2f3f̄3(q̄1, q2, q̄3, q4, q̄5; sw) =
(

f1 f̄1f2f̄2f3f̄3 ⊗ V + f Vf̄(q̄1)⊗ g f1f̄1f2f̄2(q2, q̄3, q4, q̄5)

+f Vf̄f f̄(q̄1, q2, q̄3; sw = 1)⊗ g ff̄(q4, q̄5)

)

δsw1

+

(

f f̄(q̄1)⊗ g Vf1 f̄1f2 f̄2(q2, q̄3, q4, q̄5; sw = 2)

+f Vf̄f f̄(q̄1, q2, q̄3; sw = 3)⊗ g ff̄(q4, q̄5)

)

δsw2

+

(

f f̄(q̄1)⊗ g Vf1 f̄1f2 f̄2(q2, q̄3, q4, q̄5; sw = 4)

+f f̄f f̄s(q̄1, q2, q̄3)⊗ g Vff̄(q4, q̄5)

)

δsw3.

(4.3.37)

Diagrammatically, this is the same as in figure 4.8, but with EW bosons at all inser-
tions between q̄1 and q2 (for sw = 1), q2 and q̄3 (for sw = 2), or q4 and q̄5 (for sw = 3).

f1 Vf̄1f2 f̄3f3f̄2(q̄1, q2, q̄3, q4, q̄5; sw)
This current is the same as the above, but with quark-antiquark lines being formed
from q2 and q̄5 and q4 and q̄3. The skeleton is

f1 Vf̄1f2f̄3f3f̄2(q̄1, q2, q̄3, q4, q̄5; sw) =
(

f1 f̄1f2f̄3f3f̄2 ⊗ V + f Vf̄(q̄1)⊗ g f1f̄2f2f̄1(q2, q̄3, q4, q̄5)

)

δsw1
(

f f̄(q̄1)⊗ g Vf1f̄2f2f̄1(q2, q̄3, q4, q̄5; sw = 2)

)

δsw2
(

f f̄(q̄1)⊗ g Vf1f̄2f2f̄1(q2, q̄3, q4, q̄5; sw = 4)

)

δsw3.

(4.3.38)

Diagrammatically, this current is the same as depicted on the bottom row of figure
4.9, with EW bosons at all insertions between the off-shell quark and q̄1 for sw = 1,
between q2 and q̄3 for sw = 2, and between q4 and q̄5 (for sw = 3).

f1 Vf̄2f2 f̄1f3f̄3(q̄1, q2, q̄3, q4, q̄5; sw)
In this current the quark-antiquark lines are formed from q2 and q̄1, q4 and q̄5 and
the off-shell quark and q̄3.

f1 Vf̄2f2 f̄1f3f̄3(q̄1, q2, q̄3, q4, q̄5; sw) =
(

f1 f̄2f2f̄1f3f̄3 ⊗ V + f Vf̄f f̄t(q̄1, q2, q̄3; sw = 1)⊗ g ff̄(q4, q̄5)

)

δsw1
(

g f̄f(q̄1, q2)⊗ f Vf̄f f̄(q̄3, q4, q̄5; sw = 3)

+f f̄f f̄t(q̄1, q2, q̄3)⊗ g Vff̄(q4, q̄5)

)

δsw3.

(4.3.39)
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Diagrammatically, this current is the same as the top row of figure 4.9, with the same
insertions of EW bosons as described in the previous current. Note that in the above
relations, it is important to specify the flavours such that none of the currents used
to build up the skeleton give contributions with the wrong quark and antiquark fields
joined to a single line. This can be done by specifying a different flavour for each
quark-antiquark line (these are merely labels and do not need to correspond to actual
flavours). For example, in the first sw = 3 term in equation (4.3.39), the t-channel
terms in the current f Vf̄f f̄ should vanish, meaning that the flavours of q̄3 and q4
should be different.

4.3.3 Currents with two electroweak bosons

f VVf̄(q̄2; n1, n2)
Although the ordering of the electroweak bosons with respect to the coloured particles
is not fixed, they do need to be fixed with respect to one another. This is because
the order of opposite-sign W -bosons in an amplitude is fixed by the flavours of the
initial state quarks (see sections 6.2 and 6.3), and the amplitudes are computed using
Berends-Giele currents. For this reason, the electroweak bosons are labeled V1 and
V2. The skeleton of this current is

f VVf̄(q̄2,V1,V2) = f Vf̄(q̄2,V2)⊗ V1, (4.3.40)

with the recursion relation

f VVf̄(n1, n2) =

n1
∑

r1=1

g (r1)⊗ f VVf̄(n1 − r1, n2) + f Vf̄(q̄2,V2; n1, n2)⊗ V1

+

n2−1
∑

r2=0

f VVf̄(n1, r2)⊗ g (n2 − r2).

(4.3.41)

The conjugate current f̄ VVf can also be defined as previously.

f VVf̄∗(q̄2; n, fp, fg)

This “restricted” current is the analogue of f Vf̄∗(q̄2) with two electroweak bosons.
The electroweak bosons can be both after the reference gluon (fg = fp), or both
before (fg = fp − 2), or one before and one after (fg = fp − 1). The skeleton is the
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same as for f VVf̄(q̄2; n1, n2), with additional gluons added by

f VVf̄∗(q̄1; n, fp, fg) = δfp,fg

(

fg−1
∑

r1=1

g (r1)⊗ f VVf̄∗(n− r1, fp − r1, fg − r1)

+
n

∑

r1=fg

g (r1)⊗ f VVf̄(n− r1, 0)
)

+δfp−1,fg

(

f Vf̄(n, 0)⊗ V +

fg−1
∑

r1=1

g (r1)⊗ f VVf̄∗(n− r1, fp − r1, fg − r1)
)

+δfp−2,fg

(

f Vf̄∗(n, fp − 1, fg)⊗ V

+

fg−1
∑

r1=1

g (r1)⊗ f VVf̄∗(n− r1, fp − r1, fg − r1)
)

.

(4.3.42)

g VVff̄(q1, q̄2,V1,V2; n1, n2, n3)
The skeleton for this current is

g Vff̄(q1, q̄2) =f̄ VVf(q1,V2,V1)⊗ f f̄(q̄2) + f̄ f(q1)⊗ f VVf̄(q̄2,V1,V2)

+f̄ Vf(q1,V1)⊗ f Vf̄(q̄2,V2).
(4.3.43)

The recursion relation is similar to those for g ff̄ and g Vff̄:

g VVff̄(q1, q̄2,V1,V2; n1, n2, n3) =
n1
∑

r1=1

(

g (r1)⊗ g VVff̄(n1 − r1, n2, n3) +

n3−1
∑

r3=0

g VVff̄(n1, n2, r3)⊗ g (n3 − r3)
)

+

n1−1
∑

r1=1

n1
∑

r2=r1+1

g (r1)⊗ g (r2 − r1)⊗ g VVff̄(n1 − r2, n2, n3)

+

n1
∑

r1=1

n3−1
∑

r3=0

g (r1)⊗ g VVff̄(n1 − r1, n2, r3)⊗ g (n3 − r3)

+

n3−2
∑

r3=0

n3−1
∑

r4=r3+1

g VVff̄(n1, n2, r3)⊗ g (r4 − r3)⊗ g (n3 − r4)

+

n2
∑

r2=0

(

f̄ VVf(q1,V2,V1; n1, r2)⊗ f f̄(q̄2; n2 − r2, n3)+

+f̄ Vf(q1,V1; n1, r2)⊗ f Vf̄(q̄2,V2; n2 − r2, n3)

+f̄ f(q1; n1, r2)⊗ f VVf̄(q̄2,V1,V2; n2 − r2, n3)

)

.

(4.3.44)
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f VVf̄f f̄(q̄1, q2, q̄3,V1,V2; sw; n1, n2, n3, n4)
The skeleton of this current consists of two quark-antiquark lines and two EW bosons.
Only the s-channel contributes: the off-shell quark and q̄1 make up one quark-
antiquark line, q2 and q̄3 make up the other. The argument sw again defines the
location of the electroweak pair. The skeleton is

f VVf̄f f̄(q̄1, q2, q̄3,V1,V2) =
(

f VVf̄(q̄1,V1,V2)⊗ g ff̄(q2, q̄3) + f Vf̄f f̄(V2; sw = 1)⊗ V1

)

δsw1+

(

f Vf̄(q̄1,V2)⊗ g Vff̄(q2, q̄3,V1) + f Vf̄f f̄(V1; sw = 3)⊗ V2

)

δsw2+

(

f f̄(q̄1)⊗ g VVff̄(q2, q̄3,V1,V2)

)

δsw3.

(4.3.45)

The skeleton is shown in figure 4.13. Again, the flavours are chosen such that the
t-channel contributions of f Vf̄f f̄ vanish.

q̄1 q̄1 q̄1

q̄1q̄1q̄1q̄1

q̄1 q̄1 q̄1

q2 q2 q2

q2q2q2 q2

q2 q2 q2

q̄3 q̄3 q̄3

q̄3 q̄3q̄3q̄3

q̄3 q̄3 q̄3

V1

V1

V1

V1

V1 V1

V1

V1 V1

V1

V2 V2

V2

V2

V2V2

V2

V2

V2

V2

Figure 4.13: Current f VVf̄ff̄(q̄1, q2, q̄3,V1,V2; sw; n1, n2, n3, n4), with sw = 1 shown on the
top row, sw = 2 on the middle row, and sw = 3 on the bottom row.

69



On-shell gluons are added by the recursion relation

f VVf̄f f̄(q̄1, q2, q̄3,V1,V2; n1, n2, n3, n4) =
n1
∑

r1=1

g (r1)⊗ f VVf̄f f̄(n1 − r1, n2, n3, n4)+

+

n4−1
∑

r4=0

f VVf̄f f̄(q̄1, q2, q̄3; n1, n2, n3, r4)⊗ g (n4 − r4)

+

( n2
∑

r2=0

f VVf̄(q̄1,V1,V2; n1, r2)⊗ g ff̄(q2, q̄3; n2 − r2, n3, n4)

+f Vf̄f f̄(V2; sw = 1; n1, n2, n3, n4)⊗ V1

)

δsw1+

+

( n2
∑

r2=0

f Vf̄(q̄1,V2; n1, r2)⊗ g Vff̄(q2, q̄3,V1; n2 − r2, n3, n4)

+f Vf̄f f̄(V1; sw = 3; n1, n2, n3, n4)⊗ V2

)

δsw2+

( n2
∑

r2=0

f f̄(q̄1; n1, r2)⊗ g VVff̄(q2, q̄3,V1,V2; n2 − r2, n3, n4)

)

δsw3.

(4.3.46)

Similarly, the conjugate current f̄ VVff̄f can be defined.

f VVf̄f f̄ 1(q̄1, q2, q̄3,V1,V2; sw)
This is similar to the previous current, but in the t-channel, and with the EW bosons
fixed with respect to the gluon propagator between the quark-antiquark lines. The
skeleton is

f VVf̄f f̄ 1(q̄1, q2, q̄3,V1,V2; sw) =

(

f Vf̄f f̄t(V2; sw = 1)⊗ V1

)

δsw1+

(

g VVf̄f(q̄1, q2,V1,V2)⊗ f f̄(q̄3)

)

δsw2+

(

f Vf̄f f̄t(V2; sw = 3)⊗ V1

)

δsw3
(

f Vf̄f f̄(V1; sw = 2)⊗ V2

)

δsw4.

(4.3.47)

For this work, on-shell gluons are not necessary in this current. The skeleton is shown
in figure 4.14.

g VVf1 f̄1f2f̄2(q1, q̄2, q3, q̄4,V1,V2; sw)
This current consists of an off-shell gluon with two quark-antiquark lines and two EW
bosons making up the skeleton. The two quark-antiquark lines are made up from q1
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q2 q2 q2

q2q2

q̄3 q̄3 q̄3

q̄3q̄3

q̄1

q̄1q̄1

V1
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V1

V2

V2

V2

V2

V1

V1

q̄1 q̄1

V2

sw = 1 sw = 2 sw = 4

sw = 2

Figure 4.14: Current f VVf̄ff̄ 1(q̄1, q2, q̄3,V1,V2; sw) with sw = 1, sw = 3 and sw = 4 shown
on the top row, and sw = 2 on the bottom row.

and q̄2, and q3 and q̄4. Only the skeleton need be defined:

g VVf1 f̄1f2 f̄2(q1, q̄2, q3, q̄4,V1,V2; sw) =
(

f̄ f(q1)⊗ f VVf̄f f̄(q̄2, q3, q̄4; sw = 1) + f̄ Vf(q1,V1)⊗ f Vf̄f f̄(q̄2, q3, q̄4,V2; sw = 1)

+f̄ VVf(q1)⊗ f f̄f f̄s(q̄2, q3, q̄4) + f̄ VVff̄f(q1, q̄2, q3,V1,V2; sw = 2)⊗ f f̄(q̄4)

+g VVff̄(q1, q̄2)⊗ g ff̄(q3, q̄4)

)

δsw2

+

(

f̄ f(q1)⊗ f VVf̄f f̄(q̄2, q3, q̄4; sw = 3) + f̄ f f̄fs(q1, q̄2, q3)⊗ f VVf̄(q̄4)

+f̄ Vff̄f(q1, q̄2, q3,V1; sw = 4)⊗ f Vf̄(q̄4,V2)+

+f̄ VVff̄f(q1, q̄2, q3; sw = 4)⊗ f f̄(q̄4) + g ff̄(q1, q̄2)⊗ g VVff̄(q3, q̄4)

)

δsw4.

(4.3.48)

This can be visualised as the s-channel of the g f1f̄1f2f̄2(q1, q̄2, q3, q̄4; n1, n2, n3, n4, n5)
current (on the top line of figure 4.7) with all insertions for the two EW bosons on
the q1q̄2 line for sw = 2, and on the q3q̄4 line for sw = 4.

71



Chapter 5

Hadroproduction of W+W+jj

5.1 Introduction

In this chapter, I will describe the application of the techniques discussed in the previ-
ous three chapters to the next-to-leading order QCD calculation of the production of
a pair of W+ bosons in association with two jets at the Large Hadron Collider (LHC).
This chapter will largely follow ref. [77]. I consider leptonic decays of the W -bosons,
so that the experimental signature is two charged leptons of the same sign, two jets,
and missing energy from the neutrinos. As will be seen, the cross-section for this
process is quite small, only a few femtobarns. Nevertheless, the distinctive signature
should make it readily detectable once sufficient data have been been accumulated at
the LHC, as there is very little background to this process.

The presence of two like-charged W -bosons places restrictions on the flavour struc-
ture of the amplitudes, as described in section 5.2. These restrictions allow the re-
quirement of two observed jets to be lifted without the cross-section diverging. This
unusual situation allows the production of a W+-pair to be studied in association
with zero, one, two, or more jets. Furthermore, it allows a relatively straightforward
implementation in the next-to-leading order parton showering program POWHEG [148],
the first 2 → 4 process to be implemented in such a program.

The production of W+W+ + 2 jets can proceed through electroweak (EW) or
QCD mechanisms. At leading order in QCD, the former includes couplings α4

EW ,
while the latter includes couplings α2

sα
2
EW . In spite of this and the relative sizes

of the strong and electroweak couplings, the cross-section of the QCD production
is only about 50% larger than that of the electroweak production [149]. The NLO
QCD corrections to the latter have been calculated [150]. The colour factor for the
interference between the two mechanisms vanishes at leading order, but interference
does occur at next-to-leading order. However, the interference term is subleading in
colour, and furthermore vanishes unless all quarks involved in the interaction have the
same flavour. The interference is therefore highly suppressed, and will be neglected
entirely in this work, with only the QCD mechanism considered.

Finally, this process is also interesting as a background to the study of double
parton scattering [149, 151–153], or to exotic Beyond the Standard Model (BSM)
processes, such as R-parity violating supersymmetry [154], diquark prodution followed
by decay to tt̄ pairs [155], or doubly-charged Higgs production [156, 157]. Viewed as
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either a signal or a background, an accurate theoretical description of this process is
desirable. As discussed in the Introduction, this necessitates a computation of the
cross-sections and distributions to NLO in QCD.
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ū

d c̄
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ū d

c̄s

W+

W+

W+

W+

Figure 5.1: Sample Feynman diagrams for amplitudes A0(ū, d, c̄, s), which occurs through
the s-channel (left), and A0(ū, s, c̄, d), which occurs through the t-channel (right).

5.2 Leading order amplitudes

I begin by describing the leading order calculation of the hadroproduction ofW+W++
2 jets. Any hadronic process with two final state jets involves two initial and two final
state partons. Charge conservation with a W+-pair means that these must consist of
two quark-antiquark pairs, with a single W -boson radiated off each quark-antiquark
line. The partonic amplitudes are thus 0 → q̄1q2q̄3q4 + W+(→ νe + e+) + W+(→
νµ + µ+), with all particles treated as outgoing. These amplitudes are only non-zero
for one helicity configuration, which has both quarks left-handed and both antiquarks
right-handed. Similarly, both charged leptons created in the decay of the W -bosons
are right-handed. The tree-level matrix elements are

M0(q̄1, q2, q̄3, q4; νe, e
+, νµ, µ

+) = g2s

( gw√
2

)4(

δī1i4δī3i2 −
1

Nc

δī1i2δī3i4

)

A0(q̄1, q2, q̄3, q4),

(5.2.1)
where gs, gw and Nc = 3 are the strong coupling, weak coupling, and number of
colours, and A0 is the tree-level partial amplitude with the lepton labels understood.
The polarisations of the W -bosons are defined as in equation (4.2.24), which takes
into account the decay into leptons as well as the propagating factor, including the
finite width of the W -boson.

The partial amplitude A0 is computed using the Berends-Giele current f VVf̄f f̄

with sw = 2 and no on-shell gluons, taking q̄1 to be the off-shell particle. This is com-
bined with the spinor for q̄1 to give A0. A unit Cabibbo-Kobayashi-Maskawa (CKM)
matrix is used, restricting the number of allowed flavour combinations. Depending
on the flavours of the quarks, it is possible to assign the quark and antiquarks to the
fermion lines in two different ways: pairing q̄1 with q2 and q̄3 with q4, or pairing q̄1
with q4 and q̄3 with q2. With a slight abuse of notation, I will refer to these as the
s- and t-channel respectively. Equation (5.2.1) gives the s-channel contribution – the
t-channel can be obtained by swapping 2 ↔ 4 in the labels of the quarks and the
colour indices.
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The colour-squared and averaged matrix element is

|M0|2 =Sqqg
4
s

( gw√
2

)8{

2CFNc

(

|A0
s(q̄1, q2, q̄3, q4)|2 + |A0

t (q̄1, q4, q̄3, q2)|2
)

− 4CFReal
(

A0
s(q̄1, q2, q̄3, q4)A

0∗
t (q̄1, q4, q̄3, q2)

)}

,

(5.2.2)

where the colour factor is

CF ≡ N2
c − 1

2Nc
. (5.2.3)

The s- and t-channel matrix elements may vanish depending on the flavours of the
quarks, and the final term takes account of interference between the two channels if
the flavour configuration is such that both are open. For example, if the flavours of
q̄1, q2, q̄3, q4 are ū, d, c̄, s then only the s-channel is open; for ū, s, c̄, d only the t-channel
is nonzero; and for ū, d, ū, d both channels are open and mixing between the two is
considered. There is no sum over helicities, since the amplitudes are only non-zero
if both quarks are left-handed and both antiquarks are right-handed. The factor
Sqq =

1
4
1
9
is the averaging over spins and colours of the initial state quarks. Any two

of the quarks or antiquarks may be in the initial state, giving rise to qq̄, q̄q, qq and q̄q̄
initial state channels. Figure 5.1 shows typical s- and t-channel Feynman diagrams
that contribute to A0 in the q̄q channel. Equation (5.2.1) gives the q̄q channel, and
again the other initial state channels are obtained from this by momentum exchange.
As a check, the values of |M0|2 are compared to those obtained from the public
program MadGraph [158] for all allowed flavour combinations in all four initial state
channels. This is done at a random phase space point:

p1 =(−500, 0, 0,−500)

p2 =(−500, 0, 0, 500)

p3 =(54.2314070117999,−31.1330162081798,−7.92796656791140, 43.6912823611163)

p4 =(214.488870161418,−27.0607980217775,−98.5198083786150, 188.592247959949)

pνe =(85.5312248384887,−8.22193223977868, 36.1637837682033,−77.0725048002414)

pe+ =(181.428811610043,−57.8599829481937,−171.863734086635,−5.61185898481311)

pνµ =(82.8493010774356,−65.9095476235891,−49.8952157196287, 5.51413360058664)

pµ+ =(381.470385300815, 190.185277041519, 292.042940984587,−155.113300136598),

(5.2.4)

with the convention (E, px, py, pz) in GeV. The results are shown in table 5.1, with the
momenta of the quarks assigned according to f1(−p1) + f2(−p2) → f3(p3) + f4(p4),
where fi = {u, d, c, s, ū, d̄, c̄, s̄} for i = 1, 2, 3, 4 are the flavours of the quarks or
antiquarks indicated in the table. The physical parameters of MadGraph are used: the
W - and Z-bosons have masses mW = 80.419 GeV and mZ = 91.188 GeV and widths
ΓW = 2.04759951 GeV and ΓZ = 2.44140351 GeV. The strong and weak coupling
constants are gw = 0.653232911 and gs = 1.482831732494382, and the weak mixing
angle is sinθ

w = 0.22224653283333. For the sake of uniformity, these values are used
for all tables shown in sections 5.3, 5.4, 6.2, 6.3, and 6.4. Different values are used
when presenting the results of the calculations, in sections 5.6 and 6.6.
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Flavours |M0|2 |M0
MG|2

us̄ → c̄d 4.358281874545754 4.358281874546167
ud̄ → ūd 6.810057425524780 6.810057425525394
ud̄ → c̄s 2.643908832071381 2.643908832071595
d̄u → ūd 0.7666066104913936 0.7666066104914634
d̄u → c̄s 0.3854538891754188 0.3854538891754537
s̄u → c̄d 0.6034128234054804 0.6034128234055352
uu → dd 0.8138896072944484 0.8138896072945169
uc → ds 0.7695243824577899 0.7695243824578557
d̄d̄ → ūū 15.01782935295681 15.01782935295810
d̄s̄ → ūc̄ 16.17512636645897 16.17512636646035

Table 5.1: Colour-squared and averaged matrix element for the leading order process
0 → q̄1q2q̄3q4 + W+(→ νe + e+) + W+(→ νµ + µ+) for the phase space point given in
equation (5.2.4). Results are given for all possible quarks flavour configurations and all
initial state channels, as shown in the first column. The physical parameters and momen-
tum assignments are given in the text. The third column shows the result obtained from
MadGraph for the given flavour combination. The units shown are 10−23 GeV−8.
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5.3 Real radiation amplitudes

In the previous section, the flavour structure of the Born amplitude was discussed in
some detail. This is unchanged by NLO QCD corrections, so this discussion holds
for both real emission as well as one-loop amplitudes. The matrix element for real
emission in the s-channel is

M0
s(q̄1, q2, q̄3, q4, g; νe, e

+, νµ, µ
+) =

g3s

( gw√
2

)4{

(ta)̄i1i4δī3i2A
0(q̄1, q2, q̄3, q4, g) + (ta)̄i3i2δī1i4A

0(q̄1, q2, g, q̄3, q4)

+
1

Nc
(ta)̄i1i2δī3i4A

0(q̄1, g, q2, q̄3, q4) +
1

Nc
(ta)̄i3i4δī1i2A

0(q̄1, q2, q̄3, g, q4)
}

,

(5.3.1)

where the A0 are primitive amplitudes with the position of the gluon relative to the
four quarks indicated. They are calculated using the Berends-Giele current f VVf̄f f̄

with sw = 2 and one on-shell gluon, whose position is given by n4 = 1 for the first
term, n2 = 1 for the second, n1 = 1 for the third, and n3 = 1 for the last term. As
was the case for the leading-order matrix elements, either the s- or t-channel or both
may be open depending on the flavours of the quarks, and the t-channel amplitude
M0

t is calculated from equation (5.3.1) with the same exchange 2 ↔ 4 on the quarks
and colour labels. There are eight initial state channels: qq̄, q̄q, qq, q̄q̄, gq̄, q̄g, gq and
qg.

The colour-squared and averaged matrix element for real emission is

|MR|2 =Si

∑

hg

g6s

( gw√
2

)8

2CF

{(

|M0
s(q̄1, q2, q̄3, q4, g)|2 + |M0

t (q̄1, q4, q̄3, q2, g)|2
)

+ 2 Real
(

M0
s(q̄1, q2, q̄3, q4, g)M0∗

t (q̄1, q4, q̄3, q2, g)
)}

,

(5.3.2)

where the matrix element squared in the s-channel is

|M0
s(q̄1, q2, q̄3, q4, g)|2 =N2

c

(

|A0(q̄1, q2, g, q̄3, q4)|2 + |A0(q̄1, q2, q̄3, q4, g)|2
)

+ |A0(q̄1, g, q2, q̄3, q4)|2 + |A0(q̄1, q2, q̄3, g, q4)|2

+ 2 Real
(

(

A0(q̄1, g, q2, q̄3, q4) + A0(q̄1, q2, q̄3, g, q4)
)

×
(

A0(q̄1, q2, g, q̄3, q4) + A0(q̄1, q2, q̄3, q4, g)
)∗
)

,

(5.3.3)

and similarly for the t-channel. The mixing between the channels is

M0
s(q̄1, q2, q̄3, q4, g)M0∗

t (q̄1, q4, q̄3, q2, g) =

Nc

(

A0(q̄1, q2, q̄3, q4, g)
(

A0(q̄1, q4, q̄3, q2, g) + A0(q̄1, q4, g, q̄3, q2) + A0(q̄1, g, q4, q̄3, q2)
)∗

+ A0(q̄1, q2, g, q̄3, q4)
(

A0(q̄1, q4, q̄3, q2, g) + A0(q̄1, q4, g, q̄3, q2) + A0(q̄1, q4, q̄3, g, q2)
)∗

+ A0(q̄1, g, q2, q̄3, q4)A
0∗(q̄1, q4, q̄3, q2, g) + A0(q̄1, q2, q̄3, g, q4)A

0∗(q̄1, q4, g, q̄3, q2)
)

+
1

Nc

(

A0(q̄1, g, q2, q̄3, q4) + A0(q̄1, q2, q̄3, g, q4)
)(

A0(q̄1, g, q4, q̄3, q2) + A0(q̄1, q4, q̄3, g, q2)
)∗
.

(5.3.4)
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The sum in equation (5.3.2) is over the helicities of the gluon. The factor Si in
equation (5.3.2) is the initial state averaging, with Si =

1
4
1
9
if there are two quarks in

the initial state, and Si =
1
4

1
24

if there is a quark and a gluon in the initial state. The
values of the matrix element squared equation (5.3.2) are shown in table 5.2, together
with the results from MadGraph, for a given phase space point (in GeV):

p1 =(−500, 0, 0,−500); p2 = (−500, 0, 0, 500)

p3 =(51.09842528030303,−29.59882122336450,−1.91510389563769, 41.60878783842341)

p4 =(191.82026607198480,−33.82123290323604,−65.65381249647574, 177.03309178091453)

p5 =(130.00632077374939, 51.55381760464103,−95.44103752253108,−71.65790736643960)

pνe =(72.87242470112021,−11.69341352221985, 39.78880352146413,−59.92082673285745)

pe+ =(143.84683964946802,−58.01940507009024,−131.47834077237431, 6.25362456467995)

pνµ =(71.03543116708296,−60.72621080797182,−35.38271257312147, 10.31617433775810)

pµ+ =(339.32029235629170, 142.30526592224143, 290.08220373867613,−103.63294442247896).

(5.3.5)

Flavours |MR|2 |MR
MG|2

us̄ → c̄dg 2.455080460493246 2.455080460493446
ud̄ → ūdg 2.685962046637424 2.685962046637649
ud̄ → c̄sg 0.7582823136243569 0.7582823136244223
d̄u → ūdg 0.3213389727968009 0.3213389727968288
d̄u → c̄sg 0.1838959696279038 0.1838959696279198
s̄u → c̄dg 0.1831950876924623 0.1831950876924781
uu → ddg 0.6226873230707548 0.6226873230708126
uc → dsg 0.9592702314931371 0.9592702314932247
d̄d̄ → ūūg 6.040526524615315 6.040526524615826
d̄s̄ → ūc̄g 6.872376627196192 6.872376627196782
ug → ūdd 0.06428883723798486 0.06428883723799013
ug → c̄sd 0.04938670511337863 0.04938670511338256
gu → ūdd 0.8032403779867448 0.8032403779868180
gu → c̄sd 0.8425190119045392 0.8425190119046195
d̄g → ūdū 0.09439056175463394 0.09439056175464198
d̄g → c̄sū 0.04481315884551068 0.04481315884551458
gd̄ → ūdū 3.290840945108729 3.290840945109010
gd̄ → c̄sū 2.734148940071727 2.734148940071961

Table 5.2: Colour-squared and averaged matrix element for all channels and all flavour
combinations of the real radiation process 0 → q̄1q2q̄3q4g+W+(→ νe+e+)+W+(→ νµ+µ+)
for the phase space point given in equation (5.3.5). The parameters are given in section
5.2. The first column shows the flavour configuration of the quarks, with the momentum
assignment f1(−p1) + f2(−p2) → f3(p3) + f4(p4) + f5(p5), where fi = {g, u, d, c, s, ū, d̄, c̄, s̄}
for i = 1, ..., 5. The third column shows the results obtained from MadGraph. The units
shown are 10−25 GeV−10.
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5.4 Virtual amplitudes

Again, the flavour structure is the same as discussed in section 5.2, so the focus is on
the colour decomposition. The virtual amplitude can be written in terms of partial
amplitudes A1

A and A1
B

M1(q̄1, q2, q̄3, q4; νe, e
+, νµ, µ

+) =g4s

( gw√
2

)4(

δī1i4δī3i2A
1
A(q̄1, q2, q̄3, q4)

+ δī1i2δī3i4A
1
B(q̄1, q2, q̄3, q4)

)

,

(5.4.1)

where each partial amplitude consists of five primitive amplitudes in s-channel, and
five in the t-channel. Written in terms of these primitives, the partial amplitudes are

A1
A(q̄1, q2, q̄3, q4) =

(

Nc −
2

Nc

)

A1
1,s(q̄1, q2, q̄3, q4) +

2

Nc
A1

2,s(q̄1, q2, q̄3, q4)

− 1

Nc
A1

3,s(q̄1, q2, q̄3, q4)−
1

Nc
A1

4,s(q̄1, q2, q̄3, q4)

+NfA
1
[1/2],s(q̄1, q2, q̄3, q4)

+
1

N2
c

A1
1,t(q̄1, q4, q̄3, q2)−

(

1 +
1

N2
c

)

A1
2,t(q̄1, q4, q̄3, q2)+

+
1

N2
c

A1
3,t(q̄1, q4, q̄3, q2) +

1

N2
c

A1
4,t(q̄1, q4, q̄3, q2)

− Nf

N2
c

A1
[1/2],t(q̄1, q4, q̄3, q2)

A1
B(q̄1, q2, q̄3, q4) =

1

N2
c

A1
1,s(q̄1, q2, q̄3, q4)−

(

1 +
1

N2
c

)

A1
2,s(q̄1, q2, q̄3, q4)+

+
1

N2
c

A1
3,s(q̄1, q2, q̄3, q4) +

1

N2
c

A1
4,s(q̄1, q2, q̄3, q4)

− Nf

N2
c

A1
[1/2],s(q̄1, q2, q̄3, q4)

+
(

Nc −
2

Nc

)

A1
1,t(q̄1, q4, q̄3, q2) +

2

Nc

A1
2,t(q̄1, q4, q̄3, q2)

− 1

Nc

A1
3,t(q̄1, q4, q̄3, q2)−

1

Nc

A1
4,t(q̄1, q4, q̄3, q2)

+NfA
1
[1/2],t(q̄1, q4, q̄3, q2).

(5.4.2)

The s-channel primitives are shown in figure 5.2 with the electroweak bosons
not shown; all insertions of these consistent with the flavours of the quarks must
be used. The t-channel primitive amplitudes are identical with the usual exchange
q2 ↔ q4. Primitives A1

1 and A1
2 are six-point amplitudes, the latter being a subleading

colour (nonplanar) contribution with the intermediate gluons crossing. Using the
CP-relation, this can be related to A1

1 by exchange of the helicities and momenta of
two quarks

A1
2(q̄1, q2, q̄3, q4) = −A1

1(q̄1, q2, q4, q̄3). (5.4.3)

The primitives A3 and A4 are five-point amplitudes formed by dressing either of the
Born quark lines with a gluon loop. It is convenient to consider each primitive as
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q̄1 q4

q2 q̄3

A1
1(q̄1, q2, q̄3, q4)

q̄1 q4

q2 q̄3

A1
2(q̄1, q2, q̄3, q4)

q̄1 q4

q2 q̄3

A1
3(q̄1, q2, q̄3, q4)

q̄1 q4

q2 q̄3

A1
3(q̄1, q2, q̄3, q4)

q̄1 q4

q2 q̄3

A1
5(q̄1, q2, q̄3, q4)

Q Q

Figure 5.2: Primitive amplitudes for the process 0 → q̄1q2q̄3q4 +W+W+ in the s-channel,
with the W+-bosons not shown. Double lines represent dummy lines which are not cut.
The W+-bosons do not couple to the internal quarks labeled Q.

having six propagators; this prompts the introduction of “dummy lines”, shown as
double lines in figure 5.2. Both gluons and electroweak bosons may couple to dummy
lines, but dummy lines cannot be cut. It is obvious that these two primitives can be
related by a swap of quark-antiquark lines

A4(q̄1, q2, q̄3, q4) = A3(q̄3, q4, q̄1, q2). (5.4.4)

The primitive amplitudes may be computed through the use of parent amplitudes.
These are calculational aids which give rise to one or more primitive amplitudes
through exchange of the labels on external particles. Two parent amplitudes can
be identified in this case: A1 and A2. The former corresponds exactly to primitive
A1, while the latter corresponds to the primitive A3, with the W -boson on the q̄1q2
quark-antiquark line restricted to being below the gluon propagating between the
quark-antiquark lines (i.e. closer to q̄1 than q2). This is the motivation behind the
construction of Berends-Giele currents with similar restrictions on the insertions of
the electroweak bosons, e.g. f Vf̄f f̄t, g Vf̄f f̄f 1, and f VVf̄f f̄ 1 (see section 4.3). The
primitives A1 and A2 may then be calculated from A1:

A1(q̄1, q2, q̄3, q4) =A1(q̄1, q2, q̄3, q4)

A2(q̄1, q2, q̄3, q4) =− A1(q̄1, q2, q4, q̄3),
(5.4.5)

where the second line is the quark exchange of equation (5.4.3). The primitives A3

and A4 are calculated from the other parent amplitude:

A3(q̄1, q2, q̄3, q4) =A2(q̄1, q2, q̄3, q4) + A2(q2, q̄1, q4, q̄3)

A4(q̄1, q2, q̄3, q4) =A2(q̄3, q4, q̄1, q2) + A2(q4, q̄3, q2, q̄1),
(5.4.6)

where the first term in each expression corresponds to the W -boson being below
the gluon propagator on the q̄1q2 line, and the second term has the W -boson above
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it. The exchange of quarks (q̄1, q2) ↔ (q̄3, q4) shifts the gluon bubble from the one
quark-antiquark line to the other. The use of these parent amplitudes does break
electroweak gauge invariance, but this is recovered in the full primitive amplitude.

The final primitive amplitude, A1
[1/2], is due to a fermion loop in the intermediate

gluon propagator. Charge conservation prevents the W -bosons from coupling to the
quarks in this loop, which is reflected in the Q labels in figure 5.2. Thus this amplitude
is simply a dressing of the tree-level amplitude. Indeed, it is not necessary to compute
this with the full machinery of generalised unitarity, as will be done with the other
primitive amplitudes. Instead, it can be computed directly from the Born amplitude,
modifying a result from ref. [159]

A[1/2],s(q̄1, q2, q̄3, q4) =
(

− 2

3ǫ
− 10

9

)

A0
s(q̄1, q2, q̄3, q4)

+

2
∑

i=1

(

−2

3
log

µ2

sq̄1q2Wi

)

A0,i
s (q̄1,Wi, q2, q̄3, q4),

(5.4.7)

where the sum is over the two W -bosons and A0,i
s (q̄1,Wi, q2, q̄3, q4) is the part of the

tree-level amplitude which has Wi on the q̄1q2 line. The momentum flowing through
the gluon is sq̄1q2Wi

= (pq̄1 + pq2 + pWi
)2.

The parent amplitudes are computed using the method of generalised unitarity
elaborated in chapter 3, and through these the primitive and partial amplitudes are
determined. The flavours are set as (q̄1, q2, q̄3, q4) = (ū, d, c̄, s), thus maintaining a
clear distinction between the two quark-antiquark lines of the Berends-Giele currents,
and allowing the s- and t-channel amplitudes to be computed independently.

The ratios of the single and double pole residues of the unrenormalised primitive
amplitudes to the tree-level amplitudes are defined as

R
(ǫ−2)
i,s =

1

cΓ

Resǫ−2A1
i,s(q̄1, q2, q̄3, q4)

A0(q̄1, q2, q̄3, q4)

R
(ǫ−1)
i,s =

1

cΓ

Resǫ−1A1
i,s(q̄1, q2, q̄3, q4)

A0(q̄1, q2, q̄3, q4)
,

(5.4.8)

with

cΓ = (4π)ǫ−2Γ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
. (5.4.9)

As mentioned in section 2.3, these can be calculated analytically [159], and are given
by

R
(ǫ−2)
1,s = −2 R

(ǫ−1)
1,s = − log µ2

−s14
− log µ2

−s23
+ 2

3

R
(ǫ−2)
2,s = −2 R

(ǫ−1)
2,s = − log µ2

−s13
− log µ2

−s24
+ 2

3

R
(ǫ−2)
3,s = −1 R

(ǫ−1)
3,s = − log µ2

−s12
− 3

2

R
(ǫ−2)
4,s = −1 R

(ǫ−1)
4,s = − log µ2

−s34
− 3

2

(5.4.10)

where the momenta are denoted by pq̄1 = p1; pq2 = p2; pq̄3 = p3; pq4 = p4 and
sij = (pi + pj)

2. The t-channel ratios Ri,t are defined analogously, with the exchange
p2 ↔ p4 in the analytic expressions. The logarithms are continued as written in
equation (2.3.8). Agreement between the ratios as defined in equation (5.4.8) and
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their analytic forms of equation (5.4.10) is an important first check when the primitive
amplitudes A1

i are computed. The former are shown in table 5.3 for the qq̄ initial-
state channel and the phase space point of equation (5.2.4), using the renormalisation
scale µ = 150 GeV. Also shown are the relative errors ǫ

ǫ =
R− Ranalytic

Ranalytic
(5.4.11)

between these values and those obtained from equation (5.4.10), denoted as Ranalytic.
As can be seen, there is excellent agreement, to the level of 10-13 figures.

Residue Calculated value Relative error ǫ

R
(ǫ−2)
1,s −2.00000000000161 + i9.36× 10−12 4.7× 10−12

R
(ǫ−1)
1,s 2.27792687518148− i2.41× 10−10 7.9× 10−11

R
(ǫ−2)
2,s −1.99999999999881 + i2.85× 10−12 1.5× 10−12

R
(ǫ−1)
2,s 2.79396324524537− i9.98× 10−11 3.6× 10−11

R
(ǫ−2)
3,s −1.00000000000111− i6.13× 10−13 1.3× 10−12

R
(ǫ−1)
3,s 2.29423996976934− i3.14159265358449 1.4× 10−12

R
(ǫ−2)
4,s −0.999999999997615− i5.52× 10−12 6.0× 10−12

R
(ǫ−1)
4,s −3.35015155633674− i3.14159265383248 1.1× 10−10

R
(ǫ−2)
1,t −1.99999999999498 + i1.98× 10−11 1.0× 10−11

R
(ǫ−1)
1,t 2.61075507916129− i6.28318530763737 9.4× 10−11

R
(ǫ−2)
2,t −1.99999999999980− i8.38× 10−13 4.3× 10−13

R
(ǫ−1)
2,t 2.79396324486542 + i1.31× 10−10 4.8× 10−11

R
(ǫ−2)
3,t −1.00000000000899− i9.08× 10−12 1.3× 10−11

R
(ǫ−1)
3,t −1.3594027659435− i1.59× 10−12 1.3× 10−10

R
(ǫ−2)
4,t −0.999999999999341 + i1.90× 10−12 2.0× 10−12

R
(ǫ−1)
4,t −0.02933702587566545− i2.27× 10−11 4.9× 10−11

Table 5.3: Ratios of residues of double and single poles of the four primitive amplitudes to
the tree-level amplitude. The s- and t-channel ratios for the q̄q initial state are shown. The
third column shows the relative error between these values and the values obtained from
the analytic expression of equation (5.4.10).

The interference between the virtual and tree-level amplitudes can be easily ex-
pressed in terms of the partial amplitudes

2Real
(

M0M1∗
)

=2Sqqg
6
s

( gw√
2

)8

(N2
c − 1)×

Real
(

A0
s(q̄1, q2, q̄3, q4)A

1∗
A (q̄1, q2, q̄3, q4)

+ A0
t (q̄1, q4, q̄3, q2)A

1∗
B (q̄1, q2, q̄3, q4)

)

.

(5.4.12)

Note that mixing between s- and t-channels will occur if the flavours are such that
both are open.
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For the usual phase space point, table 5.4 shows the leading-order matrix element
squared for the different initial state flavours, together with the ratio

R =
4π

αs

Real
(

M0M1∗
)

|M0|2 (5.4.13)

for the residues of the double and single poles, as well as for the finite terms. The
quark momentum assignment is the same as in section 5.2. There is a sum over all
the allowed final state flavour configurations for both the LO and NLO results shown
in table 5.4.

Flavours |M0|2 R(ǫ−2) R(ǫ−1) R(ǫ0)

us̄ → c̄d 4.358282 −5.333333 5.083984 −9.593517
ud̄ → ūd+ c̄s 9.453966 −5.333333 4.577633 −1.037184
d̄u → ūd+ c̄s 1.152060 −5.333333 5.066095 −7.270075
s̄u → c̄d 0.6034128 −5.333333 4.567948 −9.319901
uu → dd 0.8138896 −5.333333 4.737025 25.88984
uc → ds 0.7695244 −5.333333 4.013234 −14.74962
d̄d̄ → ūū 15.01783 −5.333333 4.641191 −11.66228
d̄s̄ → ūc̄ 16.17512 −5.333333 4.013234 −7.633957

Table 5.4: Leading order matrix element squared, and ratio R for double pole, single pole
and finite part of the one-loop amplitude squared, for all initial state flavour configurations.
The phase space point is given in equation (5.2.4), and the renormalisation scale is µ = 150
GeV. The physical parameters are given in the text of section 5.2. The units of the |M0|2
are 10−23 GeV−8.
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5.5 Checks, stability and running time

The colour-squared matrix elements for the Born, real radiation and virtual processes
will be integrated over phase space using a Monte Carlo method (as implemented
in MCFM [160]) to produce a cross-section. Before this is done, it is important to
check that no errors have crept into the calculation. As has been seen in sections
5.2 and 5.3, the matrix elements can be checked against a public program such as
MadGraph for the Born and real radiation processes. The dipole terms are checked
to correctly subtract the divergent real radiation terms in soft and collinear regions
of phase space. The poles of the virtual primitive amplitude can be checked against
their simple analytic expression, as seen in section 5.4. At the level of the colour-
squared interference between the leading order and virtual matrix elements, the poles
should be removed by the integrated dipoles (see section 2.2). This is checked using
a parameter α [161, 162] describing how soft or collinear a phase space point is. The
cross-section is checked to be independent of α.

Finally, the virtual amplitudes are recomputed using the OPP method, but with
the unitarity cuts applied to Feynman diagrams instead of primitive amplitudes, and
the resulting tree-level helicity amplitudes computed using Feynman rules as opposed
to using Berends-Giele recursion relations. The Feynman diagrams are generated
using Qgraf [163] and the resulting expressions are evaluated using the symbolic
manipulation program FORM [164], before being computed. Due to the large number
of Feynman diagrams, this is several orders of magnitude slower than using primitive
amplitudes and Berends-Giele currents, and is therefore not suitable for computing
cross-sections. However, it does provide an independent cross-check on the virtual
amplitudes, including the finite part1.

The Monte Carlo integration over phase space and the computation of the matrix
elements is performed in double precision as standard. At this level of accuracy,
numerical instabilities sometimes appear. Two methods are used to identify such
instabilities at the level of the primitive amplitudes. The first check is that the
coefficients c̃i and b̃i correctly solve the OPP equations (3.4.26) and (3.4.30) for the
unitarity coefficients. The remaining two OPP equations (3.4.22) and (3.4.31) almost
never admit numerical instablities. This can be done by choosing a random value for
the αi used to construct the loop momentum l, and then re-evaluating the unitarity
coefficients using first the explicit unitarity calculation with this value of l, and then
using the coefficients c̃i and b̃i. Requiring agreement between these two values to one
significant figure is sufficient to identify instabilities. The second check is that the
double and single pole residues reproduce the analytic values as given in equation
(5.4.10) to four significant figures.

Around 4% of the primitive amplitudes fail one or both of these checks. In these
cases, the primitive amplitude is recomputed using quadruple precision. This is costly
in terms of the running time, but solves the numerical instabilities in all but the most

1Since the publication of ref. [77], a number of automated programs which compute virtual
amplitudes for user-defined input particles have become available, such as GoSam [165, 166] and
HELAC-NLO [167]. An independent check of both finite and singular parts of virtual amplitudes is
now possible using these programs. Indeed, pp → W+W+jj was one of the processes used to test
the GoSam package [165].
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pathological of phase space points. For the negligible fraction of phase space points
at which the primitives still fail these checks after being recomputed in quadruple
precision, the primitive is set to zero.

The full virtual amplitude squared can be evaluated at the rate of 3-4 phase space
points per second. A phase space grid is created, weighted by the leading order matrix
element squared evaluated at each point. Using this grid, around 2×105 phase space
points are needed to produce a virtual cross-section σV with a numerical error of 1-
2%. Since a Monte Carlo integration is inherently parallelisable, σV can be calculated
within a few hours. In fact, the time taken to compute the real radiation cross-section
σR is a factor of 4-5 longer than this, despite the fact that the real radiation matrix
element can be calculated much quicker. This is because the number of phase space
points needed in the Monte Carlo integration is two orders of magnitude larger for the
real radiation cross-section, due to the need to correctly sample the soft and collinear
phase subspaces.
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5.6 Results

The hadroproduction of W+W+jj will result in the distinctive signal of two same-
sign leptons, two jets, and missing energy. Such a signal is interesting, regarded as
either a background to New Physics, or as an exotic signal arising from the Standard
Model. The Large Hadron Collider (LHC) has completed a groundbreaking run at
centre-of-mass energy

√
s = 7 TeV, with more than 5 fb−1 of data recorded. A larger

amount of data has already been recorded during the even more successful
√
s = 8

TeV run, and it is likely that pp → W+W+jj events have already been recorded.
After the shutdown in 2013, the LHC will hopefully collect ∼ 100 fb−1 of data at√
s = 13–14 TeV, making a detailed study of these exotic signatures possible.
In this section, the results for pp → W+W+jj are shown at centre-of-mass en-

ergy
√
s = 14 TeV. The W -bosons are on-shell, and decay leptonically, W+W+ →

νee
+νµµ

+. Spin correlations of the leptons are included, but final state lepton mix-
ing is neglected, so that the production of a same-flavour lepton final state e+e+

has half the cross-section as that considered here. Therefore, the results presented
here are to be multiplied by a factor of two when considering all leptonic flavours
{e+e+, µ+µ+, e+µ+}. As mentioned previously, only the strong production mecha-
nism is considered.

The top quarks are approximated as infinitely massive, with the other five quarks
being massless. This implies five flavours in the running of αs and in the internal
quark loops. This is justified since the momentum flowing through the loop is below
the top production threshold. Furthermore, final state top quarks are neglected as
they give rise to a different experimental signature. Initial and final state bottom
quarks are also neglected since they originate from top quarks, through the splitting
t∗ → W+b. I remind the reader that a unit CKM matrix is assumed.

The W -boson has mass mW = 80.419 GeV and width ΓW = 2.14 GeV. The
electromagnetic coupling is taken as α(mZ) = 1/128.802 and the weak coupling
is obtained from this with weak mixing angle sin2 θw = 0.2222. MSTW08LO and
MSTW08NLO parton distributions [98] are used for the LO and NLO calculations
respectively. The strong coupling is set through these as αs(mZ) = 0.13939 at LO
and αs(mZ) = 0.12018 at NLO. The factorisation and renormalisation scales are set
equal to one another, µR = µF = µ. Generic kinematic cuts are imposed. The lep-
tons are required to have transverse momentum pT,l > 20 GeV and pseudorapidity
|ηl| < 2.4 2 The missing transverse momentum must satisfy pT,miss > 30 GeV. The
anti-kT algorithm [168] as implemented in FastJet [111, 169] is used to define jets,
with jet separation

∆Rj1j2 =
√

∆η2j1j2 +∆φ2
j1j2

= 0.4, (5.6.1)

where ∆ηj1j2 is the difference in jet pseudorapidity, and ∆φj1j2 is the azimuthal angle
between the jets in the plane transverse to the beam direction. Jets are required to
have transverse momentum pT,j > 30 GeV.

It was mentioned in section 5.1 that the presence of a W -boson coupling to each

2The pseudorapidity is defined as η ≡ 1

2
ln cot2 θ

2
= 1

2
ln p+pz

p−pz

, where θ is the azimuthal angle
between the momentum and the beam direction, and p is the magnitude of the momentum three-
vector. This coincides with the rapidity y ≡ 1

2
ln E+pz

E−pz

for massless particles.
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Figure 5.3: The dependence of the cross-sections for the process pp → W+(→ νee
+)W+(→

νµµ
+) + n jets (n = 0, 1, 2,≥ 2) at the

√
s = 14 TeV LHC on the factorisation and renor-

malisation scale µ. Leading-order (LO) cross-sections are in dashed blue; next-to-leading
order (NLO) cross-sections are in solid red. The cuts used are described in the text.

quark-antiquark line guarantees a finite cross-section, even if a jet has vanishing
transverse momentum. This is because the emission of a massive particle ensures
that the gluon propagator 1/k2 = 1/(pq + pq̄ + pW )2 does not become singular even if
the quarks are collinear or if one is soft. It is therefore possible to consider W+W+

production in association with zero, one, two, or greater than two jets. Experimental
searches for new physics (for example, Higgs boson searches [170]) often bin signals
according to the number of associated jets, in order to identify backgrounds. Looking
at W+W+ + n jet production therefore makes sense viewed as either a signal, or as
a background to BSM signals. Figure 5.3 shows the dependence of the cross-sections
for n = 0, 1, 2,≥ 2 jets on the factorisation and renormalisation scale µ. The leading
order cross-sections σLO decrease as the scale increases, due to the decrease in the
strong coupling. This leads to a scale uncertainty of 25-50%, increasing with the
number of jets observed. The scale uncertainties in the next-to-leading order cross-
sections σNLO are notably smaller, around 10% for the 0- and 1-jet exclusive and 2-jet
inclusive cross-sections. It is interesting to note that the “optimal” scale, defined
as the scale which minimises the NLO corrections, changes with the number of jets
observed. The central values for the cross-sections shown in table 5.5 are for µ = 150
GeV, and the scale variation shown is the difference between this and the cross-section

87



at µ = 400 GeV (superscript) and µ = 50 GeV (subscript). The next-to-leading order
corrections modify the central value of the cross-sections by 5-15%.

Final state σLO σNLO

2-jet incl 2.42−0.68
+1.28 2.52−0.26

+0.11

2-jet excl 2.42−0.68
+1.28 0.68+0.43

−1.42

1-jet excl 0.46−0.11
+0.20 0.41−0.02

−0.06

0-jet excl 0.07−0.02
+0.03 0.08−0.01

+0.01

Table 5.5: Leading and next-to-leading order cross-sections for the process pp → W+(→
νee

+)W+(→ νµµ
+) + nj at the

√
s = 14 TeV LHC. The central value is at a scale µ = 150

GeV. The superscript (subscript) indicates the difference between this value and the cross-
section at µ = 400 (50) GeV. The cuts are described in the text.

In contrast to this, the NLO corrections have a significant effect on the exclusive 2-
jet production cross-section, reversing the dependence on the scale. At µ = 150 GeV,
the NLO corrections reduce the LO result by approximately a factor 3. More alarm-
ingly, the NLO cross-section becomes negative for µ . 70 GeV (admittedly, this is a
very low scale for a process involving two W -bosons and two jets). A possible expla-
nation for this is that the pT,j cut is too small: relatively soft jets contribute to the
inclusive cross-section rather than the exclusive, and this ruins the convergence of the
pQCD expansion for the latter. However, this does not account for the small scale
variation, presumably indicating good convergence, that is seen in the 2-jet inclusive
cross-section, as well as in the 0- and 1-jet exclusive cross-sections. Furthermore,
even with a very large jet cut, the 2-jet exclusive cross-section still shows a scale
dependence comparable to that of the LO cross-section. It is evident though, looking
at figure 5.4, that the scale variation of the 2-jet exclusive cross-section is reduced as
pT,j is increased, with no comparable decrease for the 2-jet inclusive cross-section. It
is not clear why this is the case, but it does suggest that by using a cut on the jet
transverse momentum pT,j > 40 GeV, the 2-jet exclusive cross-section can be kept
positive for a reasonable scale range, and the scale variation can be reduced.

Figure 5.4 also shows that even for a relatively large cut on pT,j, say pT,j > 60
GeV, the inclusive cross-section is around a factor of 2 greater than the exclusive cross-
section. This implies that a large percentage of events with at least two hard jets
have a third jet. This may be understood as follows. In the t-channel production,
the final state quarks which give rise to the jets are colour-correlated and emitted
with a large pseudorapidity difference (see figure 5.5). This gives a large angle for the
emission of a hard third jet. This feature might be useful in discriminating between
this and other processes which give rise to the same experimental signature.

The full inclusive cross-section is the sum of the 0- and 1-jet exclusive and 2-jet
inclusive cross-sections, and is approximately 3.0 fb. This is a small cross-section;
however, due to the unusual experimental signature of two same-sign leptons, jets,
and missing energy, it should be easily identifiable. The LHC is already delivering
a large luminosity: given an integrated luminosity of 100 fb−1, around 600 events
(including all lepton flavour combinations) should be recorded, providing sufficient
statistics to analyse kinematic distributions.
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Figure 5.4: The dependence of the LO cross-section, and NLO inclusive and exclusive cross-
sections, for the process pp → W+(→ νee

+)W+(→ νµµ
+)jj at the

√
s = 14 TeV LHC on

the cut on the jet transverse momentum pT,j. The LO cross-section is in blue, the NLO in
red. The central values are at µ = 140 GeV, and the bands show the effect of varying the
scale between 100 and 200 GeV.

The 2-jet inclusive distributions for the jet kinematics are shown in figure 5.5. As
with table 5.5, the central scale used is µ = 150 GeV and the scale uncertainty for
50 GeV ≤ µ ≤ 400 GeV is shown. The transverse momentum and pseudorapidity
of the hardest jet j1 and the transverse momentum of the next-to-hardest jet j2 are
shown, together with the pseudorapidity difference between the jets ∆ηj1j2. The pT
distribution peaks at the relatively large values of about 100 GeV for the hardest jet
and 40 GeV for the next-to-hardest jet. The reduced scale uncertainty at NLO can
be clearly seen. The NLO corrections do not change the shape of the distributions
considerably, other than to slightly reduce the differential cross-section for jets with
very large transverse momentum. This is a common feature seen when LO distribu-
tions are computed at a fixed, as opposed to dynamic, scale. Indeed, at these values
of transverse momentum, the scale of the process is larger than the largest choice of
scale µ = 400 GeV, and a dynamic scale would be preferable. This can be clearly seen
in the pT,j2 distribution, which becomes negative for µ ≥ 400 GeV. For such events,
the scale of the process is around 1 TeV, so clearly the choice of µ is too small. Using
a dynamic scale would give more reliable predictions for these high-end tails of the
distributions.

Distributions for the transverse momentum and pseudorapidity of the positron,
the missing transverse momentum, the invariant mass of the lepton system mll, the
pseudorapidity difference between the leptons ∆ηll, and the transverse mass of the
W -pair are shown in figure 5.6. This last quantity is defined as

mT,WW =

√

(

ET,ll + ET,miss

)2 −
(

pT,ll + pT,miss

)2
, (5.6.2)

with ET,ll =
√

p2T,ll +m2
ll and ET,miss =

√

p2
T,miss +m2

ll. The depletion at large val-

ues is seen again in the distributions of the transverse momenta, invariant mass of
the lepton system, and transverse mass of the W -pair. Otherwise, the shapes are

89



unchanged, but the NLO results have a smaller scale uncertainty.
In figure 5.7, the angular distance between the leptons and the jets, defined as

Rjl =

√

(

ηl − ηj
)2

+
(

φl − φj

)2
, (5.6.3)

is shown, together with the azimuthal angle between the leptons ∆φll, and the total
transverse momentum HT,TOT =

∑

j pT,j+pT,e++pT,µ++pT,miss. The angular distance
Rjl is sharper for the hardest jet than for the next-to-hardest jet, although both peak
at Rjl ≃ 3, with the NLO corrections increasing Rjl. The leptons in the transverse
plane tend to be back-to-back, with a slight depletion from the NLO corrections. The
HT,TOT distribution displays the usual depletion at large values.

These distributions can play an important role in distinguishing between the pp →
W+W+ + 2 jet process and other processes with the same observed final state. For
example, a W+-pair produced in double parton scattering will have a relatively flat
∆φll distribution [152].
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Figure 5.5: Jet distributions for the process pp → W+(→ νee
+)W+(→ νµµ

+)jj at the√
s = 14 TeV LHC, at LO and NLO. The bands show the scale uncertainty 50 GeV ≤

µ ≤ 400 GeV, with a central scale µ = 150 GeV. The cuts used are described in the text.
Shown are the transverse momentum and pseudorapidity of the hardest jet, the transverse
momentum of the next-to-hardest jet, and the pseudorapidity difference between the two
jets.
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Figure 5.6: Lepton distributions for the process pp → W+(→ νee
+)W+(→ νµµ

+)jj at the√
s = 14 TeV LHC, at LO and NLO. The bands show the scale uncertainty 50 GeV ≤ µ ≤

400 GeV, with a central scale µ = 150 GeV. The cuts used are described in the text. Shown
are the transverse momentum and pseudorapidity of the positron, the missing transverse
momentum, the invariant mass of the charged leptons, the pseudorapidity difference between
the leptons, and the transverse mass of the W -pair.
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Figure 5.7: Kinematic distributions for the process pp → W+(→ νee
+)W+(→ νµµ

+)jj at
the

√
s = 14 TeV LHC, at LO and NLO. The bands show the scale uncertainty 50 GeV ≤

µ ≤ 400 GeV, with a central scale µ = 150 GeV. The cuts used are described in the text.
Shown are the distance Rjl between each of the jets and the µ+, the azimuthal angle between
the charged leptons, and the sum of all transverse momenta HT,TOT .
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5.7 Conclusions

In this chapter, the next-to-leading order QCD computation of the cross-sections and
distributions for the process pp → W+W+jj were shown. The one-loop amplitude
was calculated using the methods of generalised unitarity and OPP subtraction, as
detailed in chapters 3 and 4. The presence of two colour-neutral W -bosons did not
cause undue problems, despite the use of colour-ordering. The presence of two same-
sign W -boson put strong restrictions on the flavour structure, allowing the NLO
cross-section to be defined in an infrared safe manner with 0,1,2, or more jets.

The leading-order cross-sections show a strong scale dependence, which is reduced
by the next-to-leading order corrections for the 0- and 1-jet exclusive cross-sections,
as well as for the 2-jet inclusive cross-section. The NLO corrections effect moderate
changes to the central cross-section values. The cross-section across all jet channels,
and allowing the W -bosons to decay into all lepton flavours, is around 6 fb: a sizeable
cross-section given the distinctiveness of the experimental signature.

The 2-jet exclusive cross-section is not as well behaved. Here, the NLO corrections
change the cross-sections dramatically. The scale dependence is reversed, however the
magnitude of this dependence is only slightly reduced. The origin of these difficulties is
unclear, but it could be in part due to too small a cut on the jet transverse momentum.
Since the 2-jet exclusive cross-section is notably smaller than the 2-jet inclusive cross-
section, more than half of the events with at least two hard jets also have a third.
This characteristic may be useful in discriminating between this process and other
processes with the same experimental signature. This may also be accomplished
using kinematic distributions, which have a greatly reduced scale uncertainty when
computed to NLO.
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Chapter 6

Hadroproduction of W+W−jj

6.1 Introduction

This chapter, following largely from ref. [82], will focus on the hadroproduction of
W+W− in association with two jets, at the Tevatron and the LHC. The W -bosons
decay leptonically, so that the experimental signature is two opposite charged leptons,
two jets, and missing energy. The production of two same-sign W -bosons, considered
in the previous chapter, is a background to various exotic New Physics processes.
In contrast, W+W− production is a background to arguably the most anticipated
signal at the LHC: the Standard Model Higgs boson. The discovery of a new boson,
consistent with the SM Higgs, has recently been announced [3,4], with a mass in the
region of 125–126 GeV. At these values, the dominant decay of the SM Higgs is to
bb̄. The subdominant decay is H → W+W−, and given the experimental difficulties
in the identification of final state b-quarks, this is a very important channel.

As mentioned in the Introduction, both the Tevatron and the LHC experiments
bin putative Higgs production signals according to the number of jets produced, as
these channels have different backgrounds. Of course, each additional jet costs a
factor of αs, but nevertheless Hjj production accounts for around 10% of the total
Higgs production [22, 171]. Importantly, Hjj can be produced either through gluon
fusion (the main Higgs production mechanism) or through weak boson fusion (WBF).
The angular distribution of the two jets can provide information about the coupling of
the Higgs to the top quark in gluon fusion [172], and about the coupling of the Higgs
to the electroweak sector in WBF [173]. This may help in determining whether the
newly discovered Higgs boson is SM-like or not. For either production mechanism,
W+W−jj production is an irreducible background which needs to be fully understood
if accurate identification of the Higgs is to be made. As discussed in the Introduction,
this requires a NLO QCD calculation.

The process pp(p̄) → W+W−jj involves two types of processes at a partonic level:
the four partons (two initial state, two final state) involved may be either a quark-
antiquark pair and two gluons, or two quark-antiquark pairs. The latter was described
in the previous chapter; however, the difference in the charge of theW -pair drastically
alters the flavour structure. I will discuss the leading order, real radiation and virtual
amplitudes separately for the two partonic processes, which for convenience I will call
“two quark, two gluon” and “four quark” processes respectively.
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Hadroproduction of W+W−jj can occur through electroweak as well as strong
mechanisms, and in fact the NLO QCD corrections to the electroweak production are
known [174]. I will consider only strong production. As for W+W+jj production,
interference between the two mechanisms is subleading in colour, and furthermore
can only occur for the four quark partonic processes in strong production. Due to
the large gluon flux at high-energy colliders and the colour enhancement of gluonic
interactions, these partonic contributions turn out to account for only 15% of the
total cross-section. Mixing is therefore ignored, and the calculation presented here
is concerned only with the NLO QCD production of W+W−jj through the strong
mechanism.
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6.2 Leading order amplitudes

6.2.1 Two quark, two gluon amplitudes

I will begin by considering the leading order amplitude of the process 0 → q̄qggW+(→
νµ + µ+) + W−(→ e− + ν̄e), with all particles outgoing. There is a single quark-
antiquark line to which the electroweak bosons are attached. The leptonic decay of
the W -bosons is taken into account through the definition of the polarisation vectors
from equation (4.2.24). I use a unit CKM matrix, so that the flavour of the two quarks
is the same, and there is no mixing of quark generations. The tree-level amplitude is

M0
gg(q̄1, q2, g3, g4; νµ, µ

+, e−, ν̄e) =g2s

( gw√
2

)4[
(

ta3ta4
)

ī1,i2
A0(q̄1, q2, g3, g4)

+
(

ta4ta3
)

ī1,i2
A0(q̄1, q2, g4, g3)

]

,
(6.2.1)

where gs and gw are again the strong and weak couplings, and two partial amplitudes
are used, with the different ordering of the gluons indicated. The ordering of the
W -bosons relative to each other is fixed by the flavour of the quark-antiquark pair,
but all insertions of the W -pair relative to the gluons which respect this ordering
must be considered. Furthermore, the W -pair may be coupled either directly to the
quarks or via an intermediate Z-boson or photon. To make this explicit, the partial
amplitude may be written

A0(q̄1, q2, g3, g4) =A0,[WW ]([q̄1,W,W, q], g3, g4)δh2,−1

+ C(q2,h2)A0,[Z/γ]([q̄1, Z/γ, q2], g3, g4),
(6.2.2)

where the couplings are

C(q,h) = 2Q(q) sin2 θw + PZ(sV )(T
(h)
3 − 2Q(q) sin2 θw). (6.2.3)

In equation (6.2.3), Q(q) is the electromagnetic charge of the quark q, h = ±1 is its

helicity, θw is the weak mixing angle, and T
(−1)
3 = 1, T

(+1)
3 = 0. The left-handed

coupling of the W -bosons to the quarks is taken into account by the δh2,−1 factor in
equation (6.2.2), which causes the first term to vanish if the quark is right-handed.
The amplitudes A0,[WW ] are calculated using the Berends-Giele current f VVf̄ with
n1 = 0 and n2 = 2. The coupling of the off-shell boson to W+W− and subsequent
leptonic decays is taken into account by considering the off-shell boson with momen-
tum pV = pW+ + pW− = pνµ + pµ+ + pe− + pν̄e and a polarisation vector following
equation (4.2.25). These are used in the current f Vf̄ with n1 = 0 and n2 = 2. Single
resonant amplitudes are neglected. The Z-boson propagator is

PZ(sZ) =
sV

sV −m2
Z + iΓZmZ

, (6.2.4)

with the momentum-squared sV = p2V .
The matrix element squared is

|M0
gg(q̄1, q2,g3, g4, νµ, µ

+, e−, ν̄e)|2 =

S
∑

hel

g4s

( gw√
2

)8{

4C2
FNc

(

|A0(q̄1, q2, g3, g4)|2 + A0(q̄1, q2, g4, g3)|2
)

− 4CFReal
(

A0(q̄1, q2, g3, g4)A
0∗(q̄1, q2, g4, g3)

)

}

,

(6.2.5)
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where S accounts for the averaging over initial state colours and spins, as well as
symmetric final states. There are seven initial state channels. The quark-antiquark
channels require S = Sqq =

1
4
1
9
, the gluon-gluon channel requires S = Sgg =

1
4

1
64
, and

the (anti)quark-gluon channels require S = Sqg =
1
4

1
24
. The sum runs over the helici-

ties of the gluons and the quark-antiquark pair. The results for the matrix elements
squared for the different initial state configurations are shown in table 6.1, for the
phase space point in equation (5.2.4). The gg initial state has four possible final state
flavour combinations, and the sum is taken over these. The momentum assignment
is again f1(−p1) + f2(−p2) → f3(p3) + f4(p4), where f1,2,3,4 = {g, u, d, c, s, ū, d̄, c̄, s̄}.
The MadGraph results are also shown for comparison.

Flavours |M0
gg|2 |M0

MG|2
uū → gg 7.406261963755649 7.406261963756443
dd̄ → gg 8.901658442668893 8.901658442669804
d̄d → gg 1.830415190335487 1.830415190335636
ūu → gg 4.491488196901598 4.491488196902073
ug → gu 0.8199929405056734 0.8199929405057409
dg → gd 0.4807022193576624 0.4807022193577046
gu → gu 0.5289793305819081 0.5289793305819579
gd → gd 0.2566280142351353 0.2566280142351584
gū → gū 2.574748272111126 2.574748272111326
gd̄ → gd̄ 4.334113722927112 4.334113722927462
ūg → gū 1.151410584692072 1.151410584692155
d̄g → gd̄ 1.525020087776809 1.525020087776924
gg → ūu+ d̄d+ s̄s+ c̄c 0.03139299450851931 0.0313929945085216

Table 6.1: Colour-squared and averaged matrix element for all channels and all flavour
combinations of the leading order process 0 → q̄qgg +W+(→ νµ + µ+) +W−(→ e− + ν̄e)
for the phase space point given in equation (5.2.4). Production of W -bosons through an
intermediate Z-boson or photon is considered; single resonant amplitudes are not. The third
column shows the results obtained from MadGraph. The units shown are 10−19 GeV−8, and
the physical parameters used are described in section 5.2.

6.2.2 Four quark amplitudes

I will now consider the leading order amplitudes of the partonic process 0 → q̄1q2q̄1q2+
W+(→ νµ + µ+) +W−(→ e− + ν̄e). These amplitudes are similar to those used for
W+W+ production in section 5.2, but with a more complicated flavour structure
because the W+W− system carries no overall electromagnetic charge. As before,
the tree-level amplitude can be envisioned as two quark-antiquark lines joined by an
intermediate gluon, with both the s- and t-channel allowed. The s-channel matrix
element is (cf. equation (5.2.1))

M0
4q,s(q̄1, q2, q̄3, q4; νµ, µ

+, e−, ν̄e) = g2s

( gw√
2

)4(

δī1i4δī3i2 −
1

Nc
δī1i2δī3i4

)

B0
s (q̄1, q2, q̄3, q4),

(6.2.6)
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Figure 6.1: Typical Feynman diagrams for B0
s (ū, u, s̄, s). Both W -bosons are attached to

the same quark-antiquark line, and production through an intermediate Z-boson or photon
is considered. The ordering of the W -bosons is determined by the flavours of the quarks.

with the t-channel obtained by swapping 2 ↔ 4 in the labels of the quarks and the
colour indices.

Considering the s-channel, if the flavours of q̄1 and q2 are the same, then the
flavours of q̄3 and q4 must be the same, and both W -bosons are radiated from the
same quark-antiquark line. (Recall that I use a unit CKM matrix). The flavours of
the quarks determine the ordering of theW -pair. They may also be produced through
an intermediate Z-boson or photon, which is handled using the polarisation vector of
equation (4.2.25). By analogy with equation (6.2.2), the primitive amplitude can be
written as

.

B0
s (q̄1, q2, q̄3, q4) =B0,[WW ]

s ([q̄1,W,W, q2], [q̄3, q4])δh2,−1

+B0,[WW ]
s ([q̄1, q2], [q̄3,W,W, q4])δh4,−1

+ C(q2,h2)B0,[Z/γ]
s ([q̄1, Z/γ, q2], [q̄3, q4])

+ C(q4,h4)B0,[Z/γ]
s ([q̄1, q2], [q̄3, Z/γ, q4]),

(6.2.7)

for amplitudes of this type, where the parentheses [ ] indicate the two quark-antiquark
lines. The helicites of q2 and q4 are indicated by h2 and h4 respectively, and the δ
factors in the first and second terms account for the left-handed coupling of the W -
bosons to the quarks. The first and second terms are calculated using the current
f VVf̄f f̄ with no external gluons and sw = 1 and sw = 3 respectively. The third
and fourth terms are calculated using the current f Vf̄f f̄ with sw = 1 and sw = 3
respectively. The couplings C(q,h) are given in equation (6.2.3).

On the other hand, if there is a flavour change on the quark-antiquark lines, then
one W -boson is radiated from each of the lines. In this case, the current f VVf̄f f̄

with sw = 2 is used to calculate B0
s . Which W -boson is radiated from which quark-

antiquark line depends on the flavours of the quarks. Amplitudes of this second type
occur only when both quarks are left-handed, as was the case for W+W+ production.
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ū

d s̄

c

W+

W−

Figure 6.2: Typical Feynman diagram for B0
s(ū, d, s̄, c). One W -boson is attached to each

of the quark-antiquark lines; the flavours of the quarks determine which of the W -pair is
attached to which line.

Typical Feynman diagrams for these two types of amplitude are shown in figures
6.1 and 6.2. The flavour structure of the t-channel is identical with the exchange
q2 ↔ q4. A further complication is present if both s- and t-channel amplitudes are
allowed by the flavour configuration, in which case amplitudes of both types need to
be included. For example, if the flavours are ūud̄d, then the s-channel has quark-
antiquark lines ūu and d̄d, and the amplitudes are of the first type. The t-channel
has quark-antiquark lines ūd and d̄u and has amplitudes of the second type.

The matrix element squared is identical to equation (5.2.2):

|M0
4q|2 =Sqq

∑

hel

g4s
( gw√

2

)8
{

2CFNc

(

|B0
s (q̄1, q2, q̄3, q4)|2 + |B0

t (q̄1, q4, q̄3, q2)|2
)

− 4CFReal
(

B0
s (q̄1, q2, q̄3, q4)B

0∗
t (q̄1, q4, q̄3, q2)

)

δh2h4

}

.

(6.2.8)

The sum is over the helicities of the quarks, and either the s- or t-channel may vanish
depending on the flavours of the quarks. The δh2h4 factor in the last term ensures that
the helicities of the quarks in the mixing terms match, meaning that mixing can only
occur if the quark-antiquark lines are either both left-handed or both right-handed.
A comparison with MadGraph is shown in table 6.2 for each initial flavour state, with
a sum over all possible final state flavour configurations.
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Flavours |M0
4q|2 |M0

MG|2
uc̄ → c̄u+ s̄d 0.5311485826186718 0.5311485826187159
us̄ → s̄u 0.8417285426262163 0.8417285426262881
uū → c̄c+ s̄s+ ūu+ d̄d 12.65335452235076 12.65335452235214
ud̄ → d̄u+ s̄c 0.8775368878513676 0.8775368878514423
dc̄ → c̄d 0.4479436382010625 0.4479436382011002
ds̄ → s̄d+ c̄u 0.7243783567687887 0.7243783567688506
dū → c̄s+ ūd 0.4511754846394283 0.4511754846394664
dd̄ → c̄c+ s̄s+ ūu+ d̄d 15.31656937269305 15.31656937269466
ūc → ūc+ d̄s 0.13086235672735011 0.1308623567273641
ūs → ūs 0.05827181215024162 0.05827181215024692
ūu → c̄c+ s̄s+ ūu+ d̄d 8.384086053287545 8.384086053288434
ūd → ūd+ c̄s 0.06137483858002959 0.06137483858003523
d̄c → d̄c 0.1307811561658334 0.1307811561658477
d̄s → d̄s+ ūc 0.05633039749043258 0.05633039749043762
d̄u → s̄c+ d̄u 0.1313850071465028 0.1313850071465171
d̄d → c̄c+ s̄s+ ūu+ d̄d 3.297455162121854 3.297455162122116
uc → uc 0.1178743947541448 0.1178743947541531
us → us+ dc 0.04616745239462271 0.04616745239462550
uu → uu 0.08071387406215721 0.08071387406216323
ud → ud 0.04327618820700419 0.04327618820700679
dc → dc+ us 0.1292936613217951 0.12929366132180401
ds → ds 0.05453298018958077 0.05453298018958417
du → du 0.1318334929750386 0.1318334929750477
dd → dd 0.07048471480409210 0.07048471480409762
ūc̄ → ūc̄ 0.7886267560576286 0.7886267560576713
ūs̄ → ūs̄+ d̄c̄ 1.403120919032502 1.403120919032585
ūū → d̄ū 0.5384004337712884 0.5384004337713221
ūd̄ → ūd̄ 1.368204610278690 1.368204610278770
d̄c̄ → d̄c̄+ ūs̄ 0.9838771971028136 0.9838771971028715
d̄s̄ → d̄s̄ 1.619761763822084 1.619761763822183
d̄ū → d̄ū 0.9878071990975874 0.9878071990976456
d̄d̄ → d̄d̄ 1.616030017846718 1.616030017846834

Table 6.2: Colour-squared and averaged matrix elements for all initial state channels and
flavour combinations of the leading order process 0 → q̄1q2q̄3q4+W+(→ νµ+µ+)+W−(→
e− + ν̄e), for the phase space point given in equation (5.2.4). There is a sum over final
state flavour configurations. Production of W -bosons through an intermediate Z-boson or
photon is considered; single resonant amplitudes are not. The third column shows the results
obtained from MadGraph. The units shown are 10−20 GeV−8, and the physical parameters
used are described in section 5.2.
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6.3 Real radiation amplitudes

6.3.1 Two quark, two gluon amplitudes

In this section, I will consider real radiation through the emission of an extra gluon
relative to the two quark, two gluon leading-order amplitudes. This is not the full
story, since real radiation may also come about through the splitting of a gluon into
a quark-antiquark pair. Such amplitudes will then involve two quark-antiquark pairs
and a gluon, which will be the focus of the next section. There is no ambiguity in
this division, as long as the subtraction terms and integrated dipoles are constructed
with it in mind. I will therefore consider tree-level amplitudes with three gluons,
0 → q̄qggg +W+(→ νµ + µ+) +W−(→ e− + ν̄e). These may be written in terms of
six partial amplitudes, with gluon orderings (345, 354, 435, 453, 534, 543) = S3. The
matrix element is

MR
gg =M0(q̄1, q2, g, g, g; νµ, µ

+, e−, ν̄e) =

g3s

( gw√
2

)4 ∑

σ∈S3

(

taσ3 taσ4 taσ5
)

ī1i2
A0(q̄1, q2, gσ3, gσ4, gσ5),

(6.3.1)

with the primitive amplitudes calculated using the currents f Vf̄ and f VVf̄ with
n1 = 0 and n2 = 3. The flavour structure is the same as in section 6.2.1.

The colour-squared matrix element can be written in matrix form as

|MR
gg|2 = Si

∑

hel

g6s

( gw√
2

)8

A0†CA0, (6.3.2)

where, as in section 6.2.1, the averaging over initial state colours and spins, and
symmetric final states, is taken into account by the factor S, with Sqq =

1
4
1
9
1
6
, Sqg =

1
4

1
24

1
2
, and Sgg =

1
4

1
64
. The elements of A0 are the six partial amplitudes,

A0 = (A0
345, A

0
354, A

0
435, A

0
453, A

0
534, A

0
543) (6.3.3)

with
A0

σ3σ4σ5
≡ A0(q̄1, q2, gσ3 , gσ4, gσ5). (6.3.4)

The colour matrix is

C =

















C1 C2 C2 C3 C3 C4

C2 C1 C3 C4 C2 C3

C2 C3 C1 C2 C4 C3

C3 C4 C2 C1 C3 C2

C3 C2 C4 C3 C1 C2

C4 C3 C3 C2 C2 C1

















, (6.3.5)

with
C1 = Tr(ta3ta4ta5ta5ta4ta3) = 2C4

FN
2
c

C2 = Tr(ta3ta4ta5ta5ta3ta4) = −C3
FNc

C3 = Tr(ta3ta4ta5ta4ta3ta5) = 2CF/Nc

C4 = Tr(ta3ta4ta5ta3ta4ta5) = 2CF/Nc(N
2
c + 1).

(6.3.6)
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The matrix elements squared are shown in table 6.3 for the phase space point in
equation (5.3.5), together with the results from MadGraph for comparison. The quark
momentum assignment is the same as in section 5.3: f1(−p1) + f2(−p2) → f3(p3) +
f4(p4) + f5(p5), with f1,2,3,4,5 = {g, u, d, c, s, ū, d̄, c̄, s̄}

Flavours |MR
gg|2 |MR

MG|2
uū → ggg 71.50797716783816 71.50797716784358
dd̄ → ggg 94.63084358843460 94.63084358844203
d̄d → ggg 15.31402939008978 15.31402939009103
ūu → ggg 27.08856538291897 27.08856538292079
ug → ugg 3.811015437543343 3.811015437543649
dg → dgg 1.671963111534979 1.671963111535112
gu → ugg 2.052955149911785 2.052955149911935
gd → dgg 2.097928037908580 2.097928037908755
gū → ūgg 10.13097654819845 10.13097654819917
gd̄ → d̄gg 18.32309679130728 18.32309679130855
ūg → ūgg 5.350995512425657 5.350995512426039
d̄g → d̄gg 8.074063326607667 8.074063326608200
gg → dd̄g + uūg + ss̄g + cc̄g 2.618636801282472 2.61863680128271

Table 6.3: As for table 6.1, for the real radiation partonic process 0 → q̄qggg + W+(→
νµ + µ+) +W−(→ e− + ν̄e). The phase space point is given in equation (5.3.5). The units
are 10−23 GeV−10, and the physical parameters used are described in section 5.2.

6.3.2 Four quark amplitudes

I will now consider tree-level amplitudes 0 → q̄1q2q̄3q4g+W+(→ νµ+µ+)+W−(→ e−+
ν̄e). These may arise either from the two quark, two gluon leading-order amplitudes,
through the splitting of a gluon into a quark-antiquark pair, or through the emission
of a gluon from the four quark leading-order amplitudes. The colour decomposition
is the same as in equation (5.3.1)

MR
4q =M0(q̄1, q2, q̄3, q4, g; νµ, µ

+, e−, ν̄e) =

g3s

( gw√
2

)4{

(ta)̄i1i4δī3i2B
0(q̄1, q2, q̄3, q4, g) + (ta)̄i3i2δī1i4B

0(q̄1, q2, g, q̄3, q4)

+
1

Nc
(ta)̄i1i2δī3i4B

0(q̄1, g, q2, q̄3, q4) +
1

Nc
(ta)̄i3i4δī1i2B

0(q̄1, q2, q̄3, g, q4)
}

.

The flavour structure of the partial amplitudes B0 is identical to that described in
section 6.2.2, with the Berends-Giele currents having arguments n4 = 1, n2 = 1,
n1 = 1 and n3 = 1 for the four terms in equation (6.3.2). The colour-squaring
involves a square of the s- and t-channels as well as mixing between the two, as given
in equations (5.3.2),(5.3.3), and (5.3.4). The only modification needed is that the
sum over helicities should include the helicities of the quarks as well as that of the
gluon. A comparison of the matrix elements with MadGraph is shown in table 6.4,
with the momentum assignment the same as for table 6.3.
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Flavours |MR
4q|2 |MR

MG|2
uc̄ → uc̄g + ds̄g 1.950373233665980 1.950373233666107
us̄ → us̄g 3.588072922906441 3.588072922906723
uū → cc̄g + ss̄g + uūg + dd̄g 42.11692878611027 42.11692878611423
ud̄ → ud̄g + cs̄g 3.595861319569640 3.595861319569924
dc̄ → dc̄g 1.985275766734713 1.985275766734840
ds̄ → ds̄g + uc̄g 3.609088610675031 3.609088610675315
dū → sc̄g + dūg 2.002330703251786 2.002330703251915
dd̄ → cc̄g + ss̄g + uūg + dd̄g 57.22702901259529 57.22702901260091
ūc → ūcg + d̄sg 0.1749888140534349 0.1749888140534467
ūs → sūg 0.2937768447536484 0.2937768447536744
ūu → cc̄g + ss̄g + uūg + dd̄g 16.96814635330832 16.96814635330974
ūd → dūg + sc̄g 0.2945010991120792 0.2945010991121053
d̄c → cd̄g 0.2727548242737637 0.2727548242737824
d̄s → sd̄g + cūg 0.4567923986529778 0.4567923986530172
d̄u → cs̄g + ud̄g 0.2806672074610187 0.2806672074610380
d̄d → cc̄g + ss̄g + uūg + dd̄g 10.06413846515941 10.06413846516029
uc → ucg 0.1730824140605814 0.1730824140605909
us → usg + dcg 0.08228130033029084 0.08228130033029642
uu → uug 0.1656542501460754 0.1656542501460850
ud → udg 0.07898437680305138 0.07898437680305678
dc → dcg + usg 0.1993746943036023 0.1993746943036135
ds → dsg 0.08942777892977130 0.08942777892977716
du → dug 0.2068486091470884 0.2068486091471002
dd → ddg 0.1937338698641218 0.1937338698641383
ūc̄ → ūc̄g 1.720700782572881 1.720700782572991
ūs̄ → ūs̄g + d̄c̄g 3.287172270595130 3.28717227059539170
ūū → d̄ūg 1.580123048127067 1.580123048127181
ūd̄ → ūd̄g 3.269914732209236 3.269914732209495
d̄c̄ → d̄c̄g + ūs̄g 2.131133518764605 2.13113351876474603
d̄s̄ → d̄s̄g 3.799417515547167 3.799417515547469
d̄ū → d̄ūg 2.165184291798493 2.165184291798636
d̄d̄ → d̄d̄g 4.733774414881026 4.733774414881414
ug → cc̄u+ ss̄u+ uūu+ ud̄d+ cs̄d 1.498953049944160 1.498953049944295
dg → cc̄d+ ss̄d+ dd̄d+ dūu+ sc̄u 0.8252177180229951 0.8252557714340902
gu → cc̄u, ss̄u, uūu, ud̄d, cs̄d 0.5578083198294848 0.5578083198295341
gd → cc̄d, ss̄d, dd̄d, dūu, sc̄u 2.531110288019396 2.531110288019663
ūg → ūcc̄ + ūss̄+ d̄dū+ ūuū+ d̄sc̄ 2.621696704743119 2.621696704743369
d̄g → d̄cc̄+ d̄ss̄+ ūud̄+ d̄dd̄+ ūcs̄ 2.209028444843277 2.209028444843487
gū → ūcc̄ + ūss̄+ d̄dū+ ūuū+ d̄sc̄ 5.663386035988881 5.663386035989460
gd̄ → d̄cc̄+ d̄ss̄+ ūud̄+ d̄dd̄+ ūcs̄ 6.192671718884545 6.192671718885198

Table 6.4: As for table 6.2, but for the real emission partonic process 0 → q̄1q2q̄3q4g+W+(→
νµ + µ+) +W−(→ e− + ν̄e) for the phase space point given in equation (5.3.5). There is a
sum over all final state flavour configurations, shown in the first column. The units shown
are 10−23 GeV−10, and the physical parameters used are described in section 5.2.
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Figure 6.3: Primitive amplitudes for 0 → q̄1q2g3g4 +W+W−. Only those primitives with
the ordering g3, g4 are shown. The W -bosons are not shown. A dummy line (shown as a
double line) is used for primitive A1

[1/2], which consists of a fermion loop. W -bosons do not
couple to the quarks labeled Q in this primitive.

6.4 Virtual amplitudes

6.4.1 Two quark, two gluon amplitudes

The decomposition of a two-quark n-gluon amplitude into partial and primitive am-
plitudes was considered by Bern, Dixon and Kosower in ref. [126]. The presence of
electroweak particles does not change the decomposition. The virtual amplitude for
n = 2 is

M1
gg(q̄1, q2, g3, g4; νµ, µ

+, e−, ν̄e) =g4s

( gw√
2

)4{

Nc

(

ta3ta4
)

ī1i2
A1

4;1(q̄1, q2, g3, g4)

+Nc

(

ta4ta3
)

ī1i2
A1

4;1(q̄1, q2, g4, g3)

+ Tr
(

ta3ta4
)

δī1i2A
1
4;3(q̄1, q2, g3, g4)

(6.4.1)

in terms of two partial amplitudes A1
4;1 and A1

4;3, with the colour-ordering of the
gluons indicated. These can be decomposed into six gluonic left primitive amplitudes
and two fermionic left primitive amplitudes

A1
4;1(q̄1, q2; g3, g4) =A1

a(q̄1, q2, g3, g4)−
1

N2
c

A1
c(q̄1, g4, g3, q2) +

Nf

Nc
A1

[1/2](q̄1, q2, g3, g4)

A1
4;1(q̄1, q2; g4, g3) =A1

a(q̄1, q2, g4, g3)−
1

N2
c

A1
c(q̄1, g3, g4, q2) +

Nf

Nc
A1

[1/2](q̄1, q2, g4, g3)

A1
4;3(q̄1, q2; g3, g4) =A1

a(q̄1, q2, g3, g4) + A1
a(q̄1, q2, g4, g3) + A1

b(q̄1, g3, q2, g4)

+ A1
b(q̄1, g4, q2, g3) + A1

c(q̄1, g3, g4, q2) + A1
c(q̄1, g4, g3, q2)

− Nf

Nc
A1

[1/2](q̄1, q2, g3, g4)−
Nf

Nc
A1

[1/2](q̄1, q2, g4, g3).

(6.4.2)
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Figure 6.4: Alternative diagrammatic representation of the fermionic one-loop primitive
amplitude A1

[1/2](q̄1, q2, g3, g4).

The primitive amplitudes A1
a,A

1
b , A

1
c and A1

[1/2] are shown in figure 6.3 for the ordering

q̄1, q2, g3, g4. In this figure, A1
[1/2] is constructed with dummy propagators, as were used

in section 5.4. These allow the amplitudes to have formally six propagators (including
the W -bosons, which are not shown in figure 6.3). I remind the reader that dummy
lines cannot be cut, but W -bosons can couple to them.

The primitive A1
[1/2] contains a virtual quark loop to which the gluons and the

external quark lines are coupled, as shown in figure 6.4. Unlike the W+W+ process,
the electroweak bosons can couple to the internal quark loop. Such amplitudes form
a finite and electroweak gauge invariant subset of the one-loop amplitudes. However,
these “light-by-light” contributions are neglected in this work1, and the electroweak
bosons only couple to the external quark-antiquark line in primitive A1

[1/2]. This does
not break electroweak gauge invariance. Aside from this omission, all insertions of
the electroweak bosons consistent with the flavour structure discussed in section 6.2.1
need to be considered.

The one-loop amplitude could also be written as

M1
gg(q̄1, q2, g3, g4; νµ, µ

+, e−, ν̄e) =g4s

( gw√
2

)4 ∑

σ∈S2

{

(

tbtaσ3 taσ4 tb
)

ī1i2
A1

c(q̄1, gσ4, gσ3 , q2)

+
(

tbtaσ3 tc
)

ī1i2
(faσ4 )cb A

1
b(q̄1, gσ3, q2, gσ4)

+
(

tbtc
)

ī1i2

(

faσ3faσ4
)

cb
A1

a(q̄1, q2, gσ4 , gσ3)

+
Nf

Nc

[

Nc

(

taσ3 taσ4
)

ī1i2
− Tr

(

ta3ta4
)

δī1i2

]

× A1
[1/2](q̄1, q2, gσ3, gσ4)

}

(6.4.3)

as was done in ref. [82]. This makes the relationship of the primitive amplitudes in
figure 6.3 to the full amplitude more explicit. Equation (6.4.3) can be reduced to
equations (6.4.1) and (6.4.2).

The ratios R(ǫ−2) and R(ǫ−1) of the residues of the primitive amplitude double and

1After the publication of ref. [82], the hadroproduction of W+W− and two jets including these
amplitudes was studied independently in ref. [175]. The effect of these amplitudes was found to be
about 1%.
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single poles to the leading-order amplitude are defined as

R
(ǫp)
a,b,c =

1

cΓ

ResǫpA
1
a,b,c

A0
; p = −2,−1, (6.4.4)

where the colour ordering of A0 and A1
a,b,c are the same. The analytic form of these

ratios is known from ref. [159]:

R
(ǫ−2)
a (q̄1, q2, g3, g4) = R

(ǫ−2)
a (q̄1, q2, g4, g3) = −3

R
(ǫ−2)
b (q̄1, g3, q2, g4) = R

(ǫ−2)
b (q̄1, g4, q2, g3) = −2

R
(ǫ−2)
c (q̄1, g3, g4, q2) = R

(ǫ−2)
c (q̄1, g4, g3, q2) = −1

(6.4.5)

R
(ǫ−1)
a (q̄1, q2, g3, g4) = − log µ2

−s23
− log µ2

−s34
− log µ2

−s41
− 3

2

R
(ǫ−1)
a (q̄1, q2, g4, g3) = − log µ2

−s24
− log µ2

−s43
− log µ2

−s31
− 3

2

R
(ǫ−1)
b (q̄1, g3, q2, g4) = − log µ2

−s24
− log µ2

−s41
− 3

2

R
(ǫ−1)
b (q̄1, g4, q2, g3) = − log µ2

−s23
− log µ2

−s31
− 3

2

R
(ǫ−1)
c (q̄1, g3, g4, q2) = − log µ2

−s12
− 3

2

R
(ǫ−1)
c (q̄1, g4, g3, q2) = − log µ2

−s12
− 3

2
,

(6.4.6)

where sij = (pi + pj)
2 and the momentum assignment is pq̄1 = p1; pq2 = p2; pg3 =

p3; pg4 = p4. The IR and UV singularities in the fermion loop primitive amplitudes
A1

[1/2] cancel, so that this primitive is purely finite. Focusing on the ū+u−g−g− chan-
nel, where the superscripts indicate helicities, the computed ratios are shown in table
6.5, together with the relative difference ǫ (as defined in equation (5.4.11)) between
these values and those obtained from equations (6.4.5) and (6.4.6).

The interference between the leading order and virtual amplitudes is

2 Real
(

M0
ggM1∗

gg

)

= 2S
∑

hel

g6s
( gw√

2

)8
2CFNc×

Real
{

2CFNc

(

A0(q̄1, q2, g3, g4)A
∗
4;1(q̄1, q2, g3, g4) + A0(q̄1, q2, g4, g3)A

∗
4;1(q̄1, q2, g4, g3)

)

−A0(q̄1, q2, g3, g4)A
∗
4;1(q̄1, q2, g4, g3)−A0(q̄1, q2, g4, g3)A

∗
4;1(q̄1, q2, g3, g4)

+ A0(q̄1, q2, g3, g4)A
∗
4;3(q̄1, q2, g3, g4) + A0(q̄1, q2, g4, g3)A

∗
4;3(q̄1, q2, g3, g4)

}

,

(6.4.7)

where, as before, S denotes the colour- and spin-averaging factor for the various initial
states. Table 6.6 shows the ratio R (defined in equation (5.4.13)) of the singular and
finite terms of this quantity to the leading order matrix element squared, for the
phase space point of equation (5.2.4) and scale µ = 150 GeV. The leading-order
matrix elements are the same as in table 6.1.

6.4.2 Four quark amplitudes

The decomposition into partial and primitive amplitudes of the one-loop corrections
to four quark partonic amplitudes is the same as for the W+W+ process, equations
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Residue Calculated value Relative error ǫ

R
(ǫ−2)
a (ū+, u−, g−3 , g

−
4 ) −3.00000000001131 + i2.53× 10−11 5.2× 10−12

R
(ǫ−1)
a (ū+, u−, g−3 , g

−
4 ) −1.73889134869819− i3.14159265362008 1.0× 10−10

R
(ǫ−2)
a (ū+, u−, g−4 , g

−
3 ) −3.00000000001588− i1.60× 10−11 4.3× 10−12

R
(ǫ−1)
a (ū+, u−, g−4 , g

−
3 ) −1.22285497787148− i3.14159265361691 3.7× 10−10

R
(ǫ−2)
b (ū+, g−3 , u

−, g−4 ) −2.00000000000743 + i4.36× 10−12 9.2× 10−12

R
(ǫ−1)
b (ū+, g−3 , u

−, g−4 ) 1.52621975164134− i6.03× 10−12 6.9× 10−11

R
(ǫ−2)
b (ū+, g−4 , u

−, g−3 ) −2.00000000001022− i8.92× 10−12 1.6× 10−11

R
(ǫ−1)
b (ū+, g−4 , u

−, g−3 ) −0.787662965630596− i1.92× 10−10 3.6× 10−11

R
(ǫ−2)
c (ū+, g−3 , g

−
4 , u

−) −0.999999999996179− i3.47× 10−12 6.8× 10−12

R
(ǫ−1)
c (ū+, g−3 , g

−
4 , u

−) 2.29423997010836− i3.14159265337122 2.7× 10−10

R
(ǫ−2)
c (ū+, g−4 , g

−
3 , u

−) −1.00000000000324 + i1.55× 10−11 7.5× 10−12

R
(ǫ−1)
c (ū+, g−4 , g

−
3 , u

−) 2.29423996970066− i3.14159265346791 1.2× 10−10

Table 6.5: Ratios of the singular parts of the primitive amplitudes to the leading-order
amplitudes with the same colour-ordering, for the partonic process 0 → ū+u−g−g−+W+(→
νµ + µ+) +W−(→ e− + ν̄e). The phase space point used is given in equation (5.2.4), and
the renormalisation scale is µ = 150 GeV. The middle column shows the ratios evaluated
by taking the ratio of the computed virtual and leading-order amplitudes, the last column
shows the relative error between these values and the values obtained from the analytic
expression of equations (6.4.5) and (6.4.6).

(5.4.1) and (5.4.2):

M1
4q(q̄1, q2, q̄3, q4; νµ, µ

+, e−, ν̄e) =g4s

( gw√
2

)4
(

δī1i4δī3i2B
1
A(q̄1, q2, q̄3, q4)

+ δī1i2δī3i4B
1
B(q̄1, q2, q̄3, q4)

)

(6.4.8)

with

B1
A(q̄1, q2, q̄3, q4) =

(

Nc −
1

Nc

)

B1
1,s(q̄1, q2, q̄3, q4) +

2

Nc
B1

2,s(q̄1, q2, q̄3, q4)

− 1

Nc
B1

3,s(q̄1, q2, q̄3, q4)−
1

Nc
B1

4,s(q̄1, q2, q̄3, q4)

+NfB
1
[1/2],s(q̄1, q2, q̄3, q4)

+
1

N2
c

B1
1,t(q̄1, q4, q̄3, q2)−

(

1 +
1

N2
c

)

B1
2,t(q̄1, q4, q̄3, q2)+

+
1

N2
c

B1
3,t(q̄1, q4, q̄3, q2) +

1

N2
c

B1
4,t(q̄1, q4, q̄3, q2)

− Nf

N2
c

B1
[1/2],t(q̄1, q4, q̄3, q2)

(6.4.9)
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Flavours R(ǫ−2) R(ǫ−1) R(ǫ0)

uū → gg −8.666667 −5.412754 0.7510186
dd̄ → gg −8.666667 −5.442197 5.554915
d̄d → gg −8.666667 −5.448774 2.696111
ūu → gg −8.666667 −5.429640 10.38334
ug → gu −8.666667 10.44690 −1.882044
dg → gd −8.666667 10.90627 −10.26990
gu → gu −8.666667 2.085679 19.27530
gd → gd −8.666667 2.069165 −1.858877
gū → gū −8.666667 1.935494 −0.7683517
gd̄ → gd̄ −8.666667 1.856483 6.779307
ūg → gū −8.666667 10.41266 −3.366571
d̄g → gd̄ −8.666667 10.47201 −2.522289
gg → ūu+ d̄d+ c̄c+ s̄s −8.666667 14.11299 −11.90991

Table 6.6: The double pole, single pole and finite terms of the ratio R, for all flavour
configurations. The phase space point is given in equation (5.2.4) and scale is µ = 150 GeV.
The quark momentum assignments are as in section 6.2.1, and the physical parameters are
given in section 5.2.

and

B1
B(q̄1, q2, q̄3, q4) =

1

N2
c

B1
1,s(q̄1, q2, q̄3, q4)−

(

1 +
1

N2
c

)

B1
2,s(q̄1, q2, q̄3, q4)+

+
1

N2
c

B1
3,s(q̄1, q2, q̄3, q4) +

1

N2
c

B1
4,s(q̄1, q2, q̄3, q4)

− Nf

N2
c

B1
5,s(q̄1, q2, q̄3, q4)

+
(

Nc −
1

Nc

)

B1
1,t(q̄1, q4, q̄3, q2) +

2

Nc
B1

2,t(q̄1, q4, q̄3, q2)

− 1

Nc
B1

3,t(q̄1, q4, q̄3, q2)−
1

Nc
B1

4,t(q̄1, q4, q̄3, q2)

+NfB
1
[1/2],t(q̄1, q4, q̄3, q2).

(6.4.10)

The primitives are shown in figure 5.2, with no electroweak bosons shown. The
flavour structure is the same as discussed in section 6.2.2, and this is important for
choosing the parent amplitudes. Looking at the s-channel, if both W -bosons are
radiated off the same quark line, then four parent amplitudes are identified, all of
which have the W -boson pair radiated off the first quark-antiquark line q̄1q2. The
first parent amplitude, B1, has the same colour structure as primitive B1, with two
gluons between the quark-antiquark lines. Primitive B2 can be obtained from it using
the quark exchange

B2(q̄1, q2, q̄3, q4) = B1(q̄1, q2, q4, q̄3), (6.4.11)

109



where the additional minus sign relative to equation (5.4.3) is due to an even number
of Dirac matrices on each quark-antiquark line. Thus the first two primitives are

B1(q̄1, q2, q̄3, q4) =B1(q̄1, q2, q̄3, q4) + B1(q̄3, q4, q̄1, q2)

B2(q̄1, q2, q̄3, q4) =B1(q̄1, q2, q4, q̄3) + B1(q̄3, q4, q2, q̄1),
(6.4.12)

where the second term in each expression allows for the W -pair to be radiated off the
second quark-antiquark line.

The second and third parent amplitudes have the quark-antiquark line from which
both W -bosons are radiated (q̄1q2) dressed with a gluon loop. In the second par-
ent amplitude B2, the W -bosons are both restricted to being below the propagating
gluon between the quark-antiquark lines (again, this motivates the use of restrictive
Berends-Giele currents, such as f VVf̄f f̄ 1). In the third parent amplitude, B3, one
W -boson is below the propagating gluon and one is above it. The fourth parent am-
plitude, B4, has the second quark-antiquark line q̄3q4 dressed with a gluon loop. The
primitive B3 is

B3(q̄1, q2, q̄3, q4) =B2(q̄1, q2, q̄3, q4) + B2(q2, q̄1, q4, q̄3) + B3(q̄1, q2, q̄3, q4)

+ B4(q̄3, q4, q̄1, q2).
(6.4.13)

The first and second term allow for the W -bosons to be both below and both above
the gluon propagator, while the fourth term takes into account the emission of the
W -pair from the second quark-antiquark line. Similarly, the primitive B4 is

B4(q̄1, q2, q̄3, q4) =B2(q̄3, q4, q̄1, q2) + B2(q4, q̄3, q2, q̄1) + B3(q̄3, q4, q̄1, q2)

+ B4(q̄1, q2, q̄3, q4).
(6.4.14)

The coupling of the W -bosons through an intermediate Z-boson or photon is
contained in all the parent amplitudes except B3, where the W -bosons are always
“split” by the intermediate gluon. Thus

Bi(q̄1, q2, q̄3, q4) = B
[WW ]
i ([q̄1,W,W, q2], [q̄3, q4])δh2,−1

+ C(q2,h2)B
[Z/γ]
i ([q̄1, Z/γ, q2], [q̄3, q4])

(6.4.15)

for i = 1, 2, 4, and with the couplings C(q,h) given in equation (6.2.3).
On the other hand, if one W -boson is emitted from each quark-antiquark line,

then the parent amplitudes are the same as in section 5.4. These are denoted B5 and
B6, with

B1(q̄1, q2, q̄3, q4) =B5(q̄1, q2, q̄3, q4)

B2(q̄1, q2, q̄3, q4) =− B5(q̄1, q2, q4, q̄3)

B3(q̄1, q2, q̄3, q4) =B6(q̄1, q2, q̄3, q4) + B6(q2, q̄1, q4, q̄3)

B4(q̄1, q2, q̄3, q4) =B6(q̄3, q4, q̄1, q2) + B6(q4, q̄3, q2, q̄1).

(6.4.16)

To reiterate, which parent amplitudes are used, and hence whether equations (6.4.12),
(6.4.13) and (6.4.14), or equation (6.4.16) are used to calculate the primitives, depends
on the flavour configurations of the quarks. The t-channel is similar with the overall
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exchange q2 ↔ q4. As with the leading-order amplitudes, both s- and t-channels may
be present for certain flavour configurations, in which case the primitive amplitude
for one channel is calculated using equations (6.4.12),(6.4.13) and and (6.4.14), and
the primitive amplitude for the other channel using equation (6.4.16).

The final primitive amplitude B1
[1/2] has an internal quark loop in the gluon propa-

gator. As in section 6.4.1, contributions where the electroweak bosons couple directly
to the internal quarks are neglected. Then the primitive B1

[1/2] can be calculated
analytically, as in section 5.4:

B[1/2](q̄1, q2, q̄3, q4) =
(

− 2

3ǫ
− 10

9

)

B0(q̄1, q2, q̄3, q4)−
2

3
L. (6.4.17)

The term L involves the logarithm of the momentum squared flowing through the
fermion loop. The expression for this in terms of the external momenta changes
depending on where the W -bosons are attached. If both are attached to the same
quark-antiquark lines, then the leading-order amplitudes are of the first kind, and L
is

L = log
µ2

−s12WW

(

B0,[WW ]([q̄1,W,W, q2], [q̄3, q4])δh2,−1

+ C(h2,q2)B0,[Z/γ]([q̄1, Z/γ, q2], [q̄3, q4])
)

+ log
µ2

−s12

(

B0,[WW ]([q̄1, q2], [q̄3,W,W, q4])δh4,−1

+ C(h4,q4)B0,[Z/γ]([q̄1, q2], [q̄3, Z/γ, q4])
)

(6.4.18)

where s12WW = (p1 + p2 + pW+ + pW−)2 and s12 = (p1 + p2)
2. If the W -bosons are

each attached to a separate quark-antiquark line, then the leading-order amplitudes
are of the second kind, and L is

L = log
µ2

−s12W
B0(q̄1, q2, q̄3, q4) (6.4.19)

where s12W = (p1 + p2 + pW±), the sign of the W -boson being determined by the
flavours of the quarks.

The ratios of the residues of the primitive amplitude double and single poles to the
leading-order amplitudes are given by equation (5.4.8). To avoid confusion, in this

section I will call these ratios S
(ǫ−2)
i and S

(ǫ−1)
i . These ratios, and the relative difference

ǫ between them and the values calculated using equation (5.4.10), are given in table 6.7
for the ūūuu flavour configuration, using the helicities h1 = h3 = +1; h2 = h4 = −1.
The phase space point is given in equation (5.2.4), and the scale used is µ = 150 GeV.

The interference with the leading order amplitude is the same as equation (5.4.12):

2 Real
(

M0
4qM1∗

4q

)

=2Sqq

∑

hel

g6s

( gw√
2

)8

(N2
c − 1)×

Real
(

B0
s (q̄1, q2, q̄3, q4)B

1∗
A (q̄1, q2, q̄3, q4)

+B0
t (q̄1, q4, q̄3, q2)B

1∗
B (q̄1, q2, q̄3, q4)

)

.

(6.4.20)
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Residue Calculated value Relative error ǫ

S
(ǫ−2)
1,s −2.00000000000361 + i1.95× 10−12 2.1× 10−12

S
(ǫ−1)
1,s 2.27792687492828− i6.55× 10−11 3.1× 10−11

S
(ǫ−2)
2,s −2.00000000001044 + i1.16× 10−11 7.8× 10−12

S
(ǫ−1)
2,s 2.61075507985411− i6.28318530743432 4.1× 10−11

S
(ǫ−2)
3,s −0.999999999998909 + i1.10× 10−12 1.5× 10−12

S
(ǫ−1)
3,s −2.25832593972456 + i2.68× 10−12 1.5× 10−12

S
(ǫ−2)
4,s −0.999999999999035 + i3.25× 10−13 1.0× 10−12

S
(ǫ−1)
4,s 1.38562251813323− i1.18× 10−10 8.5× 10−11

S
(ǫ−2)
1,t −2.00000000001069− i6.46× 10−12 5.3× 10−12

S
(ǫ−1)
1,t 2.79396324510457− i8.05× 10−13 8.0× 10−12

S
(ǫ−2)
2,t −1.99999999998831 + i8.03× 10−12 7.1× 10−12

S
(ǫ−1)
2,t 2.61075508150681− i6.28318530716388 2.6× 10−10

S
(ǫ−2)
3,t −0.999999999999177 + i4.11× 10−13 9.2× 10−13

S
(ǫ−1)
3,t −1.35940276594094 + i2.30× 10−12 1.8× 10−12

S
(ǫ−2)
4,t −1.00000000000075− i1.33× 10−12 1.5× 10−12

S
(ǫ−1)
4,t −0.0293370258094962− i8.47× 10−11i 2.9× 10−9

Table 6.7: Ratios of the double and single poles of the four primitive amplitudes to the
leading-order amplitudes, for the process 0 → ūuūu+W+(→ νµ + µ+) +W−(→ e− + ν̄e)
with left-handed quarks. The scale is µ = 150 GeV, and the phase space point is given in
equation (5.2.4). Both s- and t-channel amplitudes are shown. The middle column shows
the ratios evaluated by taking the ratio of the computed primitive and tree-level amplitudes,
the last column shows the relative error between these values and the values obtained from
the analytic expression of equation (5.4.10).

As before, the interference between leading-order and virtual contributions can only
occur if the helicities of the quarks are the same; in particular, mixing between s-
and t-channels is only allowed if both quarks are either left- or right-handed.

The ratios

S =
4π

αs

Real
(

M0
4qM1∗

4q

)

|M0
4q|2

(6.4.21)

are shown in table 6.8 at the usual phase space point given in equation (5.2.4) and
scale µ = 150 GeV. The double and single pole residues as well as the finite part are
shown. The quark momenta assignments are the same as in section 6.2.2.
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Flavours S(ǫ−2) S(ǫ−1) S(ǫ0)

uc̄ → c̄u+ s̄d −5.333333 5.750651 0.4524014
us̄ → s̄u −5.333333 5.750651 3.750180
uū → c̄c+ s̄s+ ūu+ d̄d −5.333333 4.934021 5.095183
ud̄ → d̄u+ s̄c −5.333333 5.748697 3.540692
dc̄ → c̄d −5.333333 5.750651 3.142645
ds̄ → s̄d+ c̄u −5.333333 5.750651 6.138216
dū → c̄s + ūd −5.333333 5.713771 3.114761
dd̄ → c̄c+ s̄s+ ūu+ d̄d −5.333333 4.927865 10.47116
ūc → ūc+ d̄s −5.333333 5.234614 27.41621
ūs → ūs −5.333333 5.234614 11.46348
ūu → c̄c+ s̄s+ ūu+ d̄d −5.333333 5.696549 16.77058
ūd → ūd+ c̄s −5.333333 5.219374 11.32847
d̄c → d̄c −5.333333 5.234614 26.92679
d̄s → d̄s+ ūc −5.333333 5.234614 10.98327
d̄u → s̄c + d̄u −5.333333 5.231760 26.28934
d̄d → c̄c+ s̄s+ ūu+ d̄d −5.333333 5.719133 10.38244
uc → uc −5.333333 4.679901 33.77764
us → us+ dc −5.333333 4.679901 14.08678
uu → uu −5.333333 5.073850 27.11092
ud → ud −5.333333 4.647071 14.64257
dc → dc+ us −5.333333 4.679901 32.56174
ds → ds −5.333333 4.679901 14.50912
du → du −5.333333 4.698136 32.13524
dd → dd −5.333333 5.526318 9.415604
ūc̄ → ūc̄ −5.333333 4.679901 4.258128
ūs̄ → ūs̄+ d̄c̄ −5.333333 4.679901 14.80830
ūū → d̄ū −5.333333 5.069817 8.736124
ūd̄ → ūd̄ −5.333333 4.682434 13.74283
d̄c̄ → d̄c̄+ ūs̄ −5.333333 4.679901 4.555774
d̄s̄ → d̄s̄ −5.333333 4.679901 14.75539
d̄ū → d̄ū −5.333333 4.700852 5.104717
d̄d̄ → d̄d̄ −5.333333 5.288125 10.10712

Table 6.8: The double pole, single pole and finite terms of the ratio S, for all initial state
flavour configurations at the phase space point given in equation (5.2.4). There is a sum
over all final state flavours. The scale is µ = 150 GeV. The quark momentum assignments
are as in section 6.2.2, and the physical parameters are given in section 5.2.
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6.5 Checks, stability and running time

As with the W+W++2 jets process, the calculations of the leading-order, real radia-
tion and virtual matrix elements are embedded in the program MCFM, and the Monte
Carlo integration over phase space is done in this framework. The leading-order
and real radiation matrix elements squared for the various flavour configurations are
checked against MadGraph, as seen in sections 6.2 and 6.3. The dipoles are checked
to cancel the singularities of the real radiation in the soft and collinear regions. The
integrated dipoles are checked by confirming the independence of the cross-section on
the parameter α [161, 162]. The double and single poles of the virtual amplitude are
checked against their analytic values at the level of primitive amplitudes and at the
level of virtual matrix element squared, as shown in section 6.4. The virtual ampli-
tudes are also computed using the Feynman diagram-based OPP program mentioned
in 5.5, which provides a semi-independent check on its finite part.

As mentioned in section 5.5, the computation is performed in double precision as
standard, and two checks are used to test the accuracy of each primitive amplitude:
the poles are checked against their analytically known value, and the OPP equations
(3.4.26) and (3.4.30) are recalculated to ensure that the coefficients in the expansion of
the unitarity coefficients satisfy these equations. If either test fails then the primitive
is recomputed using quadruple precision. A degree of tuning is involved in determining
the required accuracy for each test, weighing the increased accuracy against a large
increase in running time. For two quark, two gluon amplitudes, requiring the poles
to be reproduced to within three significant figures, and the OPP equations to be
solved to within two significant figures, establishes a good balance between accuracy
and speed. For the four quark amplitudes, the required accuracy of the poles is four
significant figures, and the accuracy of the OPP solutions is one figure. Overall,
approximately 0.4% of the points are recomputed using quadruple precision.

The more complicated flavour structure, and the greater number of helicities for
which the matrix elements are nonzero, lead to longer run times than was the case
for the W+W+ + 2 jets process. It takes about 2.5 seconds to evaluate the virtual
matrix element squared in a given initial state channel for a single phase space point
for the two quark, two gluon contributions, and about 2 seconds for the four quark
contributions. For the former, we require about 2 × 105 phase space points for a
stable cross-section, and about 4 × 105 phase space points for the latter, using a
phase space grid weighted by the leading-order matrix elements squared. Since these
computations can easily be parallelised, a cross-section can be obtained with 15-20
hours of running time. Again, the time required to compute the real radiation cross-
section σR is longer than this (by a factor of about two), because the number of phase
space points required for an accurate result is ∼ 107.
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6.6 Results

In this section, I will present the cross-sections and kinematic distributions for the
hadroproduction of W+W− in association with two jets, to next-to-leading order
(NLO) in QCD, at both the Tevatron and the LHC at centre-of-mass energy

√
s =

7 TeV. Production at the Tevatron will be considered as a background to Higgs
production in association with two jets, and apposite experimental cuts will be used.
On the other hand, production at the LHC will be considered as a signal process,
with some comments about the future discrimination between this process and Higgs
production.

As before, the W -bosons decay leptonically, W+W− → νµµ
+e−ν̄e, including spin

correlations. Results for all possible final lepton states µ+e−, e+µ−, e+e−, µ+µ− can
be obtained by multiplying these results by a factor four. Since the leptons have op-
posite charge, there is no chance of mixing. Single resonant amplitudes are neglected,
although including these via the polarisation of the Z-boson and photon given in
equation (4.2.26) would not be particularly difficult. As discussed in the section 6.1,
electroweak production is ignored. The W -bosons are produced with a Breit-Wigner
distribution around a mass mW = 80.419 GeV with a width ΓW = 2.141 GeV. The
mass and width of the Z-boson are mZ = 91.188 GeV and ΓZ = 2.49 GeV respec-
tively. The electroweak couplings are defined through α(mZ) = 1/128.802 and the
weak mixing angle sin2 θw = 0.2222. The parton distributions used are MSTW08LO
at leading-order and MSTW08NLO at next-to-leading order [98], corresponding to
strong couplings αs(mZ) = 0.13939 and αs(mZ) = 0.12018 respectively.

Top quarks are taken to be infinitely massive, and hence never appear as virtual
particles. All other quarks are massless. Final state tops have a distinct experimental
signature and will not be considered – tops in fact do not appear anywhere in these
calculations. It is then difficult to see how bottom quarks could be included (using
a unit CKM matrix) without breaking electroweak gauge invariance. On the other
hand, the bottom quark flux of protons and antiprotons is small, and final state
bottoms can be separately identified through the b-tagging of jets. It is therefore
a good approximation to ignore the third quark generation entirely2. It is possible,
however, to include third generation quarks with realistic masses in the unitarity
framework, and indeed top phenomenology has been studied using this approach
[71, 74, 78, 88–92].

6.6.1 Results at the Tevatron

Although the Tevatron shut down in October 2011, the analysis of more than 10 fb−1

of data is ongoing. Hints of a Higgs boson with a mass in the region of 120 GeV
have been observed [1], and it is hoped that further analysis will provide independent
corroboration of the LHC Higgs discovery. As mentioned previously, putative Higgs
signals are binned according to the number of jets produced, with the 0-jet bin con-
tributing around 60% of the total signal, the 1-jet bin around 30%, and the ≥ 2-jet
bin around 10% [25]. As W+W−jj production is an irreducible background to the

2The effect of the third quark generation on the cross-section is found to be approximately 3%
in ref. [175].
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latter, it is important to investigate its cross-sections and kinematic distributions in
the Higgs search setup.

The results for pp̄ → W+W−jj at centre-of-mass energy
√
s = 1.96 TeV are

shown. The cuts of ref. [25], which are themselves derived from the Higgs boson
search at CDF [176], are used. The hardest lepton is required to have transverse
momentum pT,l1 > 20 GeV and pseudorapidity |ηl1| < 0.8, and the other lepton
must have transverse momentum pT,l2 > 10 GeV and pseudorapidity |ηl2| < 1.1. The
leptons must have an invariant mass mll > 16 GeV to prevent production by soft
photons. A lepton isolation requirement is also imposed: a jet within a distance
∆R < 0.4 of a lepton must be soft, pT,j < 0.1pT,l. Here, the quantity ∆R is defined

in the usual way: ∆R =
√

(∆η)2 + (∆φ)2, where ∆η and ∆φ are the differences in
pseudorapidity and azimuthal angle of the two particles, respectively. The cut on the
missing energy is performed through the missing relative transverse energy, defined
as

Erel
T,miss = |pT,miss| sin∆φmin, (6.6.1)

where pT,miss is the missing tranverse momentum and ∆φmin = min
(

∆φ, π/2
)

, with
∆φ the angle between pT,miss and the nearest lepton or jet. The cut is Erel

T,miss > 25
GeV. Jets are defined through the kt algorithm with separation ∆Rj1j2 = 0.4, and
are cut on transverse momentum pT,j > 15 GeV and pseudorapidity |ηj | < 2.5.

LO

NLO

Tevatron, s =1.96 TeV

40 60 80 100 120 140 160

1.5

2.0

2.5

3.0

3.5

Μ @GeVD

Σ
@f

bD

Figure 6.5: Dependence of the cross-section of pp̄ → W+(→ νµµ
+)W−(→ e−ν̄e)jj at√

s = 1.96 TeV on the factorisation and renormalisation scale µ, at leading-order (blue)
and next-to-leading order (red) in QCD. The cuts used are described in the text.

The factorisation and renormalisation scales are set equal to one another, µF =
µR = µ, and varied between µ = mW/2 and µ = 2mW . The dependence of the
cross-section at LO and NLO on the scale is shown in figure 6.5. The decrease in the
LO cross-section as the scale increases is driven by the decreasing strong coupling.
The LO cross-section is σLO = 2.2−0.7

+1.1 fb, where the central value is taken at µ =
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mW and superscript (subscript) is the difference between the central value and the
value at µ = 2mW (µ = 1/2mW ). At NLO, this becomes σNLO = 2.0−0.1

−0.2 fb. The
approximately 40% scale uncertainty at LO falls to less than 10% once the NLO
corrections are taken into account, and the central value itself also drops by 20%.
The Hjj cross-section in this setup, with decay H → W+W− → νµµ

+e−ν̄e and
mH = 125 GeV, is approximately 0.05 fb with a large scale uncertainty. This is more
than an order of magnitude smaller than the scale uncertainty on the LO cross-section
for the W+W−jj background. Clearly, a detailed study of the properties of the Higgs
boson is not possible in such a situation. While using the NLO cross-section does
reduce the scale uncertainty by almost an order of magnitude, it is still comparable
to the signal Higgs cross-section.

Kinematic distributions are of great help in discriminating between signal and
background processes. In the decay H → W+W− → l+l−νν, the W -bosons have
anti-correlated spins due to the scalar nature of the Higgs, and will tend to be back-
to-back. The left-handed coupling of the W -bosons to fermions means that one
W -boson will decay into a lepton travelling in the same direction, while the other will
give rise to a lepton travelling in the opposite direction. The azimuthal angle between
the leptons ∆φll coming from a Higgs is thus expected to be small. This is in contrast
to the angular distribution for leptons arising from W+W− production, which peaks
at π. This is shown in figure 6.6. The NLO corrections make the leptons slightly
less back-to-back, and greatly reduce the scale uncertainty. Related to this is the
distribution of the invariant mass of the lepton system mll, also shown in figure 6.6.
The NLO corrections do little to change the shape, except to soften it slightly, but
the scale uncertainty is of course reduced. Also shown in figure 6.6 is the transverse
mass of the W -pair mT,WW , defined in equation (5.6.2). The NLO effects deplete the
differential cross-sections slightly at large values of mT,WW , as well as reducing the
scale uncertainty. This distribution shows a more dramatic peak and drop-off when
the W -bosons are created through Higgs decay [172].

Another distribution of great interest is the difference in jet pseudorapidity ∆ηj1j2 =
ηj1 − ηj2. This is because it has a different shape in Higgs production depending on
the method of production: small values of |∆ηj1j2| are favoured if the production is
through gluon fusion, while larger values of |∆ηj1j2| are favoured if the production is
through weak boson fusion (see e.g. ref. [25]). Differentiating between these is impor-
tant since the former probes the Yukawa couplings of the Higgs to the quarks, while
the latter probes the interactions between the Higgs and the electroweak bosons. The
∆ηj1j2 distribution for the background is shown in figure 6.7. The shape is similar
to that of a Higgs created through gluon fusion: strongly peaked at small values of
|∆ηj1j2 | with a small number of events found at large |∆ηj1j2|.

The pseudorapidities of the two leptons and the transverse momentum of the
electron are also shown in figure 6.6. The reduction of scale uncertainties is most
strikingly seen in the lepton pseudorapidity plots. These are slightly antisymmetric
due to the antisymmetric pp̄ initial state. The pT,e− distribution shows a depletion
at large transverse momenta due to the NLO corrections. This was also observed in
section 5.6, where it was mentioned that this is due (at least in part) to a fixed scale
being used at LO. Using a dynamic scale at LO can often lead to modifications of
distributions similar to those caused by NLO corrections.
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Figure 6.6: Leptonic kinematic distributions for pp̄ → W+(→ νµµ
+)W−(→ e−ν̄e)jj at√

s = 1.96 TeV, at LO and NLO. The cuts used are described in the text. The bands show
the scale uncertainty for mW /2 ≤ µ ≤ 2mW , with the central value at µ = mW . Shown are
the azimuthal angle between the leptons ∆φll, the invariant mass of the leptons mll, the
transverse mass of the W -pair mT,WW , the transverse momentum of the electron pT,e− and
the pseudorapidities of the leptons ηe− and ηµ+ .

.

118



LO
NLO

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

DΗj1j2

dΣ
�d
D
Η

j1
,j

2
@f

bD

LO
NLO

50 100 150 200 250
1´10-4

5´10-4

0.001

0.005

0.010

0.050

0.100

pT,j1 @GeVD

dΣ
�d

pT
,j

1
@f

b�
G

eV
D

LO
NLO

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Ηj1

dΣ
�d
Η

j1
@f

bD

LO
NLO

100 150 200 250 300 350 400 450
0.000

0.005

0.010

0.015

HT,TOT @GeVD

dΣ
�d

H
T

,T
O

T
@f

b�
G

eV
D

Figure 6.7: Jet distributions for pp̄ → W+(→ νµµ
+)W−(→ e−ν̄e)jj at

√
s = 1.96 TeV, at

LO and NLO. The cuts used are described in the text. The bands show the scale uncertainty
for mW/2 ≤ µ ≤ 2mW , with the central value at µ = mW . Shown are the difference in jet
pseudorapidities ∆ηj1j2 , the transverse momentum and pseudorapidity of the hardest jet
pT,j and ηj , and the sum of all transverse momenta HT,TOT .

Figure 6.7 also shows the distributions of the transverse momentum and pseudo-
rapidity of the hardest jet, as well as the quantity HT,TOT , the sum of the tranverse
momenta of the jets, leptons, and missing particles. The reduction in scale uncer-
tainty at NLO can be seen, as can the softening of pT,j and HT,TOT at NLO.

6.6.2 Results at the LHC

The LHC recently announced the discovery of the Higgs boson by both the ATLAS [3]
and CMS [4] experiments. CMS reports a preferred mass of mH ≃ 125.3 GeV, while
ATLAS favours a slightly higher mass of mH ≃ 126.5 GeV. While the properties of
this particle are consistent with the Standard Model Higgs boson, this needs to be
confirmed. Data collected during the remainder of the current

√
s = 8 TeV run, as

well as the longer
√
s = 13–14 TeV run, will hopefully give further insight into the

exact nature of the Higgs. To do so, observation of the Higgs produced in association
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Figure 6.8: Dependence of the cross-section of pp → W+(→ νµµ
+)W−(→ e−ν̄e)jj at√

s = 7 TeV on the factorisation and renormalisation scale µ (left pane), and on centre-
of-mass energy

√
s (right pane). Cross-sections at leading-order are shown in blue, and at

next-to-leading order in red. The cuts used are described in the text.

with two jets is important, and the understanding of W+W−jj production as an
irreducible background is equally so.

In this section, I will show the results for pp → W+W−jj at the
√
s = 7 TeV

LHC run. This may seem a bit dated, but it can easily be scaled to the appropriate
energy, since I will also show that the dependence of the cross-section on the centre-
of-mass energy is close to linear. The process is regarded as a signal rather than
a background, and the cuts used are inspired by tt̄ studies at the LHC [177, 178].
Both charged leptons are required to have transverse momenta pT,l > 20 GeV and
pseudorapidities |ηl| < 2.4. The missing transverse momentum must satisfy pT,miss >
30 GeV. The jets are reconstructed using the FastJet implementation of the anti-
kt algorithm [111, 168, 169] with ∆Rj1j2 = 0.4, and are required to have transverse
momentum pT,j > 30 GeV and pseudorapidity |ηj| < 3.2. These rather generic cuts
allow the a sizeable cross-section W+W−jj production cross-section.
The factorisation and renormalisation scales are set equal to each other, µF =

µR = µ, and the scale is varied between mW ≤ µ ≤ 4mW with the central value at
µ = 2mW . The dependence of the LO and NLO cross-sections on the scale is shown on
the left of figure 6.8. The fall of the LO cross-section as the scale increases is familiar
and caused by the decreasing strong coupling. The cross-sections are σLO = 46−11

+15

fb and σNLO = 44+2.3
−1.7 fb at LO and NLO respectively. Again, the scale uncertainty

decreases by an almost order of magnitude from the LO to the NLO result. The
central value is also reduced by the NLO corrections, although not as severely as seen
in the production at the Tevatron.

Given that the LHC has already gathered large data sets at two centre-of-mass
energies, with at least one more run at a higher energy in the future, it is useful to
know how the cross-section varies with energy. This is shown in the right-hand panel
of figure 6.8, where it can be seen that this dependence is close to linear. Furthermore,
it can be seen that the scale at which the NLO corrections are the smallest changes
from µ ≃ 2mW at

√
s = 7 TeV to µ ≃ 4mW at

√
s = 14 TeV. This is useful, since

experimental collaborations often use LO calculations only, in which case the scale
can be chosen to minimise the effect of the neglected higher order corrections.

In figure 6.9, I show the distributions ∆φll, mll, mT,WW and ∆ηj1j2, which are
important in Higgs searches, as discussed in the previous section. The shapes are
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Figure 6.9: Kinematic distributions for pp → W+(→ νµµ
+)W−(→ e−ν̄e)jj at

√
s = 7

TeV, at LO and NLO. The cuts used are described in the text. The bands show the
scale uncertainty for mW ≤ µ ≤ 4mW , with the central value at µ = 2mW . Shown are
the azimuthal angle between the leptons ∆φll, the invariant mass of the leptons mll, the
transverse mass of the W -pair mT,WW , and the difference in jet pseudorapidities ∆ηj1j2.

.

similar to those seen in figures 6.6 and 6.7: the leptons are preferentially produced
back-to-back, and the jet pseudorapidity difference distribution peaks at small values
of |∆ηj1j2 |. The NLO corrections have very little effect on the shape of the distribu-
tions, but reduce the scale uncertainty drastically.

Figures 6.10 and 6.11 show other distributions: the transverse momenta and pseu-
dorapidities of the hardest and next-to-hardest jets, pT,j1, ηj2, pT,j2, and ηj2 ; the trans-
verse momentum pT,µ+ and the pseudorapidity ηe−, the missing transverse momentum
pT,miss, and the sum of all transverse momenta HT,TOT . The transverse momentum
distributions all show characteristic softening by NLO effects. The lepton pseudora-
pidities are symmetric as the initial state pp is symmetric. All distributions display
a large decrease in scale uncertainties once NLO QCD corrections are taken into
account.
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Figure 6.10: Jet distributions for pp → W+(→ νµµ
+)W−(→ e−ν̄e)jj at

√
s = 7 TeV, at LO

and NLO. The cuts used are described in the text. The bands show the scale uncertainty for
mW ≤ µ ≤ 4mW , with the central value at µ = 2mW . Shown are the transverse momenta
and pseudorapidities for hardest and next-to-hardest jets.
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Figure 6.11: Leptonic distributions for pp → W+(→ νµµ
+)W−(→ e−ν̄e)jj at

√
s = 7

TeV, at LO and NLO. The cuts used are described in the text. The bands show the
scale uncertainty for mW ≤ µ ≤ 4mW , with the central value at µ = 2mW . Shown are the
momentum of the positron, the pseudorapidity of the µ+, the missing transverse momentum
and the sum of all transverse momenta HT,TOT .
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6.7 Conclusion

In this chapter, the generalised unitarity method was put to work in calculating
the hadroproduction of W+W−jj. Production in two partonic modes, namely q̄qgg
and q̄qq̄q, was considered, with the former being dominant. The flavour structure was
much more complicated than that considered in chapter 5, due to the electromagnetic
neutrality of the W -pair. This made the computation more intricate, and the running
time longer, but did not cause any particular difficulties. Likewise, the presence of
two colour-neutral particles is easily handled.

Phenomenology at both the Tevatron and LHC was studied. In both cases, the
NLO corrections reduce the scale uncertainties present in both total cross-sections
and distributions by an order of magnitude, to the level of around 5-10%. Indeed,
this was one of the main motivations for performing calculations to NLO in QCD
discussed in the Introduction. The NLO corrections are also found to reduce the
central cross-section value by around 20% at the Tevatron and 10% at the

√
s = 7

TeV LHC. The LHC cross-section shows a close to linear dependence on the centre-
of-mass energy. This suggests a quick manner in which the results presented here
may be scaled to future energies, in order to get a first estimate of the effect of NLO
corrections. Furthermore, it is suggested that the scale choice minimising the effect
of the NLO corrections also increases with centre-of-mass energy, from µ ≃ 2mW at√
s = 7 TeV to µ ≃ 4mW at

√
s = 14 TeV.

The role of certain kinematic distributions in discriminating between a Higgs signal
and W+W− production was briefly discussed. The NLO corrections have little effect
on the shape of the distributions, other than softening the transverse momentum and
mass distributions at large values. However, it is advantageous to use distributions
calculated to NLO, since the much smaller scale uncertainty translates into a more
reliable discrimination.
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Chapter 7

Hadroproduction of W+W−j
through a Fermion Loop

7.1 Introduction

In this chapter, I will discuss the production of W+W−j through gluon-gluon fu-
sion1. The partonic process 0 → ng +W+W− (n ≥ 2) does not occur at tree-level:
the lowest-order amplitude MV

f involves a quark loop to which the W -bosons couple
(see figure 7.1). This has two important consequences. First, the virtual amplitude is
finite, in contrast to the virtual amplitudes encountered in the previous two chapters
which had both ultraviolet and infrared poles. The virtual amplitude is also elec-
troweak gauge invariant. Second, at leading order (LO) and next-to-leading order
(NLO), the initial states are either quark-quark or quark-gluon. The gluon fusion
amplitude therefore does not contribute to the NLO cross-section, since there is no
tree-level amplitude with which it can be colour-multiplied (see equation (2.1.2)).
The gluon fusion amplitude enters the cross-section at next-to-next-to-leading order
(NNLO) through its square

δσNNLO =

∫

dΦN

∑

hel

|MV
f |2. (7.1.1)

Of course, this cross-section is suppressed by an additional power of αs relative
to the NLO cross-section, and one might think that therefore the NNLO corrections
are negligible. In fact, this is not necessarily the case, since the LHC has a large
gluon flux at small momentum transfers x ∼ 2mW√

s
. It is unclear a priori whether this

enhancement compensates sufficiently for the additional αs factor to make δσNNLO

sizeable compared to the NLO cross-section for a given process.
This question was first studied by Binoth, Ciccolini, Kauer, and Kramer [42, 43]

for the process gg → W+W−. They found that the relative size of the δσNNLO

contribution is highly cut dependent. For inclusive cuts, it increases the NLO cross-
section by around 5%, but this increases to 30% when cuts designed for Higgs searches

1These processes are similar to the “light-by-light” virtual amplitudes neglected in the previous
chapter.
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g

g

g

W+

W−

Figure 7.1: Diagrammatic representation of the production of W+W−j by gluon fusion,
through a virtual quark loop.

in gluon fusion are applied. In fact, for these cuts the δσNNLO correction is a factor
of about seven larger than the NLO corrections.

Given that Higgs searches are binned according to the number of jets produced,
it is interesting to see whether this level of significance is also present when the W -
pair is created in association with a jet, and whether the effect of the gluon-fusion
contribution is so strongly cut dependent.
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A1
f (g1, g2, g3)

g1

g3

g2

W+

W−

A1
f (g1, g3, g2)

Figure 7.2: Primitive amplitudes A1
f (g1, g2, g3) (left) and A1

f (g1, g3, g2) (right), for the pro-

cess 0 → gggW+W−. One ordering of the W -bosons is shown; all insertions relative to the
gluons are included in these primitives.

7.2 Virtual amplitudes

The production of W+W−j through gluon fusion involves the partonic process 0 →
gggW+(→ νee

+)W−(→ µ−ν̄µ). As before, the W -bosons decay leptonically, using
equation (4.2.24) to define the polarisation states. However, single resonant produc-
tion is now included, using equation (4.2.26) to define the polarisation vectors of
intermediate Z-bosons or photons. The virtual amplitude is

MV
f (g1, g2, g3; νe, e

+, µ−, ν̄µ) =g3s

( gw√
2

)4{

Tr
(

ta1ta2ta3
)

A1
f (g1, g2, g3)

+ Tr
(

ta1ta3ta2
)

A1
f (g1, g3, g2)

}

,

(7.2.1)

where gw and gs are the weak and strong couplings respectively, and the partial
amplitudes A1

f serve also as the primitive amplitudes, shown in figure 7.2.
Unlike in the previous chapters, all flavours of quarks are considered circulating in

the loop, with the top and bottom quarks being massive and the other two generations
being massless. The primitive amplitudes can then be written in terms of massless
and massive primitives

A1
f = 2A1

f,0 + A1
f,m, (7.2.2)

where the unit CKM matrix ensures that no massless quarks appear in the massive
primitive amplitude, or vice versa. The massless and massive primitives may be split
into their contributions from the W -bosons coupling directly to the virtual quarks,
and their coupling through a virtual Z-boson (axial and vector) and through a photon

A1
f,0 =A

[WW ]
f,ud +

∑

q={u,d}

(

C
(q)
ZV

A[ZV ] + C
(q)
ZA

A[ZA] + C(q)
γ A[γ]

)

,

A1
f,m =A

[WW ]
f,tb +

∑

q={t,b}

(

C
(q)
ZV

A[ZV ] + C
(q)
ZA

A[ZA] + C(q)
γ A[γ]

)

.
(7.2.3)
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Figure 7.3: Two different unitarity double cuts (shown in red) on the primitive A1
f (g1, g2, g3)

with different orderings of theW -bosons with respect to the gluons. This can lead to double-
counting of unitarity cuts, as described in the text.

The presence of single resonant amplitudes makes this expression more complicated
than equation (6.2.2), since the single resonant current equation (4.2.26) is different
for an intermediate Z-boson than for a intermediate photon. The couplings are

C
(q)
ZV

= T
(q)
3 − 2Q(q) sin2 θw; C

(q)
ZA

= −T
(q)
3 ; C(q)

γ = 2Q(q) sin θw, (7.2.4)

with T
(u,c,t)
3 = 1/2 and T

(d,s,b)
3 = −1/2, and Q(q) is the electric charge of the quark.

In all terms in equation (7.2.3), all orderings of the electroweak bosons relative to the
gluons are considered: this leads to 12 insertions for the W -pair (taking into account
the orderings W+W− and W−W+) and 3 insertions for the Z-boson or photon.

Unlike previous primitive amplitudes, A1
f is completely cyclic. This leads to an

issue when using the usual Berends-Giele currents f Vf̄ and f VVf̄ . Consider two
orderings of the W -pair relative to the gluons in the primitive A1

f (g1, g2, g3), each with
a different unitarity double cut, as shown in figure 7.3. If the tree-level amplitude
containing g1 and W+ is computed using current f Vf̄, both orderings g1W

+ and
W+g1 will contribute. The tree-level amplitudes resulting from these two cuts are thus
identical, so the cuts are equivalent, and including both would be double counting.
This problem is not restricted to double cuts; nor is it a result of the two orderings
of the W -pair, since it is present when amplitudes with the Z-boson or photon are
evaluated too. Since the unitarity indices – the label of the propagating quarks which
are cut – are not the same, it is difficult to automatically identify such double counting
during the evaluation of primitives.

This problem is the motivation behind the Berends-Giele currents f Vf̄g∗, and
f VVf̄g∗. As discussed in section 4.3, these currents have a “reference” gluon, and the
W -bosons are restricted to being attached to the quark-antiquark line either before
or after this gluon. For this reason, they are referred to as “restricted” currents.
The reference gluon is always chosen to be g1. If a current includes this gluon, then
restricted currents are used. The tree-level amplitude arising from the left diagram in
figure 7.3 will be computed using f Vf̄g∗ with arguments fp = fg = 1. The W -boson
will be attached to the quark-antiquark line after the gluon (reading clockwise). The
tree-level amplitude arising from the right diagram will be computed using f Vf̄g∗

with arguments fp = 2 and fg = 1. The W -boson is attached before the gluon.
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Double counting is thus avoided. The unmodified currents f Vf̄ and f VVf̄ can be
used for tree-level amplitudes that do not contain g1.

Numerical values for A1
f,0 and A1

f,m, and their sum A1
f , are shown in table 7.1 for

the eight combinations of the gluon helicities . The parameters used are quoted in
the next section. The phase space point used is (in GeV)

pg1 = (−500, 0, 0,−500)

pg2 = (−500, 0, 0, 500)

pg3 = (86.3540681437814,−15.2133893202618, 37.6335512949163,−76.2187226821854)

pνe = (280.118181809376,−83.1261116505822,−263.203856758651, 47.7490851160266)

pe+ = (127.522529569661,−90.4490412959935,−83.1783077030789, 34.0930433392580)

pµ− = (414.130068374543, 232.145564945939, 332.7544367808,−82.9857518524426)

pν̄µ = (91.8751521026384,−43.3570226791011,−24.0058236140057, 77.3623460793435).

(7.2.5)

Ordering and |A1
f,0| |A1

f,m| |A1
f |

helicities
g−1 , g

−
2 , g

−
3 23.21330 26.65234 71.74573

g−1 , g
−
2 , g

+
3 32.40065 37.56669 101.3440

g−1 , g
+
2 , g

−
3 6.205020 6.628405 18.87935

g−1 , g
+
2 , g

+
3 4.773174 5.031766 14.41761

g+1 , g
−
2 , g

−
3 3.522647 6.204687 4.826768

g+1 , g
−
2 , g

+
3 5.936161 8.474948 5.884032

g+1 , g
+
2 , g

−
3 5.699256 1.606166 9.799904

g+1 , g
+
2 , g

+
3 3.844351 0.9542655 6.734822

g−1 , g
−
3 , g

−
2 24.00377 26.87233 73.79497

g−1 , g
−
3 , g

+
2 31.42718 38.80862 100.7887

g−1 , g
+
3 , g

−
2 6.930642 6.370970 19.94051

g−1 , g
+
3 , g

+
2 4.540278 5.275261 14.06054

g+1 , g
−
3 , g

−
2 5.124427 5.388578 6.081942

g+1 , g
−
3 , g

+
2 4.211189 8.456738 4.243700

g+1 , g
+
3 , g

−
2 6.729332 0.6778853 12.91303

g+1 , g
+
3 , g

+
2 3.882990 1.094038 6.673465

Table 7.1: Matrix elements for the massless and massive primitives, A1
f,0 and A1

f,m, as well

as the total primitives A1
f , for both orderings of the gluons, and all eight gluon helicities,

at the phase space point of equation (7.2.5). Units are 10−6 GeV−3.

The matrix element squared is

|MV
f |2 =Sggg

6
s

( gw√
2

)8 ∑

hel

2CF

{

(

2CFNc − 1
)(

|A1
f(g1, g2, g3)|2 + |A1

f (g1, g3, g2)|2
)

− 4 Real
(

A1
f(g1, g2, g3)A

1,∗
f (g1, g3, g2)

)

}

.

(7.2.6)
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For the above phase space point, the numerical value of the virtual matrix element
squared is 7.830968×10−7 GeV−6. If only one massless generation is used in the loop,
this results becomes 8.348897× 10−8 GeV−6. If one massive generation is used, then
this result is 1.128414× 10−7 GeV−6.
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7.3 Checks, stability and running time

The computation of the virtual matrix elements as described in the previous section
was implemented in the private program TOPAZ, written by M. Schulze and K. Mel-
nikov. This program has previously been used in top phenomenology studies [88–92].
This program performs the Monte Carlo integration over the phase space too. The
virtual amplitude should be finite, and indeed the residues of the poles of the virtual
amplitude were found to be 9-15 orders of magnitude smaller than the finite parts.
This level of agreement is comparable with that shown in tables 5.3, 6.5 and 6.7. The
finite parts were checked against the Feynman diagram-based OPP computation, as
in sections 5.5 and 6.5, and agreement was found. As a further check, the amplitude
A

[WW ]
f,ud was checked against the public program GoSam [165, 166], an automated im-

plementation of the OPP procedure based again on the evaluation of conventional
Feynman diagrams. Agreement was found to the level of 4 significant figures.

The computation of the primitive amplitudes was performed in double precision
as standard, with the usual two checks on the accuracy of the result performed: the
poles were checked to be smaller than 10−4, and the OPP equations were checked to
have been solved to an accuracy 10−2. The computation proved surprisingly unstable:
around 25% of all primitive amplitudes evaluated failed one or both of these checks. In
these cases, the OPP equations were solved in quadruple precision, using the tree-level
helicity amplitudes calculated in double precision. Typically, about half the primitive
amplitudes recalculated in this manner still failed one or both of the checks. For
these primitive amplitudes, the full calculation was repeated in quadruple precision:
tree-level amplitudes were recomputed and the OPP equations again solved. After
this, only about 0.05% of the primitives fail one or both of the checks, and these
are set to zero. It is unclear why such a high percentage of primitive amplitudes fail
the checks after the initial computation, although it is predominantly the amplitudes
A

[WW ]
f,tb which fail.
As a result of the large number of recomputations in quadruple precision that are

required, the computational time is larger than would be expected for a 2 → 3 process:
it takes over five seconds for the virtual matrix element to be evaluated at a single
phase space point. The phase space grid was created using tree-level pp → W+W−j
production with gluonic fluxes for the initial state partons. With this grid, around
105 phase space points are required to give a cross-section with an error of a few
percent. However, by parallelising the computation, it can be accomplished within a
few days.
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7.4 Results

In this section, I will present results for pp → W+W−j at the LHC with centre-of-mass
energies

√
s = 8 TeV and

√
s = 14 TeV [84]. The gluon fusion contribution to the

NNLO correction is included, as described in the previous chapter. The cross-section
to NLO is calculated using an implementation similar to that discussed in chapter
6, and in fact using the leading-order matrix elements described in section 6.2 to
compute the real radiation contributions. As a byproduct, the NLO computation
was made publicly available, as an add-on to MCFM v6.12. This calculation will not
be discussed further in this work.

Since an important motivation for this work were the studies of the importance
of gluon fusion in the production of W+W− [42, 43], these calculations are repeated
here. The cross-sections to NLO were computed using MCFM [24], and the gluon fusion
contributions were computed in the same manner as 0 → gggW+W−, described in
section 7.2.

As before, the W -bosons decay leptonically, W+W− → νee
+µ−ν̄µ, with the results

summed over all lepton flavours being a factor of four larger than the results shown in
this section. As mentioned in section 7.2, single resonant W -production is included
at all levels. The masses of the W - and Z-bosons are taken to be mW = 80.399
GeV and mZ = 91.1876 GeV respectively, and their widths are ΓW = 2.085 GeV
and ΓZ = 2.4952 GeV. The weak couplings are defined through the Fermi constant
GF = 1.166364× 10−5 GeV−2 and g2w = 8/

√
2GFm

2
W . The electromagnetic coupling

is obtained from this using the weak angle sin2 θw = 1−m2
W /m2

Z . All quarks are taken
to be massless except the top and bottom quarks, which have masses mt = 172.9 GeV
and mb = 4.19 GeV respectively. Jets are defined using the anti-kt algorithm [168]
implemented in FastJet [111, 169], with ∆Rj1j2 = 0.4. The parton distributions are
from the MSTW08 set [98]. The gluon fusion contribution is considered as an approx-
imation to the full NNLO cross-section, and is therefore calculated using the NNLO
distribution. One could equally well argue that since the fermion loop amplitudes are
the leading-order amplitudes in gluon fusion, LO PDFs should be used. Since the
gluon flux is less at NNLO than at LO, this would increase the gluon fusion contri-
bution by around 30%. The LO and NLO cross-sections are computed using LO and
NLO PDFs. The LO, NLO, and NNLO PDFs use strong couplings αs(mZ) = 0.13939,
αs(mZ) = 0.12018, and αs(mZ) = 0.11707, respectively.

Two sets of kinematic cuts are used. The first, referred to as “standard cuts”, are
generic cuts for an experimental signature involving charged leptons, jets, and miss-
ing energy. These cuts require the leptons to have transverse momentum pT,l > 20
GeV and pseudorapidity |ηl1| < 2.5, the jets to have transverse momentum pT,j > 20
GeV and pseudorapidity |ηj| < 3.2, and the missing transverse momentum to satisfy
pT,miss > 30 GeV.

2This code is available from http://www-thphys.physics.ox.ac.uk/people/TomMelia/tommelia.html
or from http://mcfm.fnal.gov/. Note that the public code does not include the fermion loop contri-
butions to the NLO cross-section, the effect of which is negligible.
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Standard Cuts
σLO (fb) σincl

NLO (fb) σexcl
NLO (fb) δσNNLO (fb) δσNNLO/σ

incl
NLO

8 TeV
WW 141.0(1)+2.8

−4.0 232.0(4)−5.8
+7.5 143.8(2)+4.2

−4.1 8.1(1)−1.7
+2.2 3.5%

WW j 87.8(1)−10.9
+13.5 111.3(2)−5.5

+4.9 66.6(2)+4.4
−9.0 3.4(1)−1.0

+1.6 3.1%

14 TeV
WW 259.6(2)+14.2

−17.2 448.3(5)−7.4
+11.6 242.0(3)+9.2

−8.6 23.6(1)−4.1
+5.2 5.3%

WW j 203.4(1)−19.9
+22.9 254.5(4)−10.2

+9.0 127.6(4)+14.8
−24.1 11.8(4)−3.2

+4.7 4.6%

Table 7.2: Cross-sections for pp → W+(→ νee
+)W−(→ µ−ν̄µ) + n jets, n = 0, 1 at the√

s = 8 TeV and
√
s = 14 TeV LHC. The standard cuts are used. The central values are

computed at scale µ = 2mW , with the statistical errors shown in parentheses. The upper
and lower values for cross-sections are obtained with the scale µ = mW (subscript) and
µ = 4mW (superscript). The last column shows the relative size of the NNLO contribution
to the inclusive NLO cross-section for the central scale choice.

The second set of cuts (“Higgs cuts”) are similar to the cuts used by ATLAS collab-
oration3 in their recent Higgs searches in the WW decay channel [170]. The hardest
and next-to-hardest leptons are required to have transverse momentum pT,lmax > 25
GeV and pT,lmin

> 15 GeV; both must have pseudorapidity |ηl| < 2.5. The two leptons
must be separated by ∆Rll > 0.3. The missing relative transverse energy must satisfy
Erel

T,miss > 25 GeV. The definition used for this quantity is similar to equation (6.6.1):

Erel
T,miss = |pT,miss| sin∆φmin, (7.4.1)

with pT,miss the missing tranverse momentum and ∆φmin = min
(

∆φ, π/2
)

, with ∆φ
the angle between pT,miss and the nearest lepton or jet. Additionally, the nearest
lepton or jet is now constrained to have pT > 25 GeV. In section 6.6, I mentioned
that W -bosons originating from Higgs decay will themselves decay to leptons with a
small opening angle, and consequently the invariant mass of the charged lepton system
mll will also be small. This motivates the cuts on the azimuthal angle between the
leptons ∆φll < 1.8 and on the invariant mass of the leptons 10 GeV < mll < 50 GeV
(the lower bound on mll reduces photon background). The WW process with no
jets has an additional cut: the transverse momentum of the charged lepton systems
must be pT,ll > 30 GeV. There are no further cuts to suppress the 2-jet production
cross-section.

The results for W+W− and W+W−j production using the standard cuts are
shown in table 7.2, at centre-of-mass energies

√
s = 8 TeV and

√
14 TeV. The cross-

sections are shown at LO and NLO (inclusive and exclusive), together with the gluon
fusion NNLO contribution. The statistical errors in the final digit are shown in
parentheses. The factorisation and renormalisation scales are set equal to one another,
µR = µF = µ. The central value is computed using µ = 2mW , and the variations
between this value and those obtained at scales µ = mW and µ = 4mW are shown

3Details related to the detector are ignored, so that the cuts used here are slightly simpler than
those used by ATLAS.
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Higgs search cuts
σLO (fb) σincl

NLO (fb) σexcl
NLO (fb) δσNNLO (fb) δσNNLO/σ

excl
NLO

8 TeV
WW 35.6(1)+0.9

−1.3 51.1(1)−0.4
+0.9 38.8(1)+1.0

−0.8 2.7(1)−0.5
+0.7 7.0%

WW j 12.6(1)−1.5
+1.8 10.8(1)+0.3

−0.7 10.6(1)+0.3
−0.9 0.6(1)−0.2

+0.2 5.7%

14 TeV
WW 63.4(1)+3.9

−4.7 91.9(2)−0.1
+0.4 63.4(2)+2.1

−2.0 7.5(1)−1.2
+1.5 11.8%

WW j 28.7(1)−2.6
+2.9 21.6(1)+1.2

−2.1 20.5(1)+1.7
−2.2 1.8(2)−0.5

+0.7 8.8%

Table 7.3: As for table 7.2, but using the Higgs cuts described in the text.

as subscript and superscript respectively. The effect of the NLO corrections is large
for W+W− production, enhancing the LO cross-section by 65% at

√
s = 8 TeV and

75% at
√
s = 14 TeV. The effect of these corrections is smaller for the production in

association with a jet: the cross-section is enhanced by around 25%, still a significant
effect. By contrast, the NNLO contribution enhances the NLO cross-section by 3-5%
for either process. While this effect is not large, it is not negligible either; indeed, the
NNLO contribution is comparable to the scale uncertainty of the NLO cross-section.
The enhancement is larger for the higher centre-of-mass energy – a reflection of the
larger gluon flux – and is slightly smaller for theW+W−j process than for theW+W−

process. The physical parameters, kinematic cuts and PDFs used here are different
to those of refs. [42, 43]; nevertheless, the effect of the gluon fusion contribution to
the process W+W− shown in table 7.2 is similar to that reported in these references.

Table 7.3 shows the cross-sections using the Higgs cuts, with the same setup as
table 7.2. The inclusive NLO cross-sections for W+W− are enhanced by around
50% with respect to the LO results, but the exclusive NLO cross-sections for this
process are similar to the LO cross-sections. This indicates that 25-40% of W+W−

events include final state jets, with the percentage increasing with
√
s, as might be

expected. The gluon fusion contributions become more important using these cuts:
for this process they amount to 7% of the exclusive NLO cross-section at

√
s = 8 TeV

and almost 12% at
√
s = 14 TeV. Furthermore, these contributions are significantly

larger than the scale uncertainty in the NLO cross-section. They are, however, much
smaller than the ∼ 30% effect of refs. [42, 43]. The reason for this is that the Higgs
cuts used here are more inclusive than those used in refs. [42, 43]. In particular,
these references use cuts on the lepton transverse momentum pT,lmax > 35 GeV and
pT,lmin

> 25 GeV, on the azimuthal angle between the leptons ∆φll < 0.78, and on the
invariant mass of the lepton system mll < 35 GeV. Therefore, it would appear that
for cuts used at present in Higgs searches at the LHC, 10-15% is a better estimate of
the effect of gluon fusion contributions to W+W− production than 30%.

Table 7.3 shows that the effect of the NLO corrections on the W+W−j cross-
sections is negative, and the inclusive and exclusive cross-sections are similar. This
is not indicative of a very small probability of a second jet being emitted, since the
LO cross-section for W+W−jj production at

√
s = 8 TeV using these cuts is ap-

proximately 4.5 fb. Rather, the small difference between the inclusive and exclusive
W+W−j cross-sections could be due to the action of the dipoles. In W+W−jj pro-
duction, the two jets are usually emitted in the same hemisphere, where the effect of
the dipoles is most pronounced. The effect of gluon fusion is around 6% at

√
s = 8
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TeV and around 9% at
√
s = 14 TeV. Again, gluon fusion has less of an effect in this

process than in W+W− production. However, these effects are still comparable to
the scale uncertainty in the NLO cross-section, and thus should not be neglected.

The importance of the gluon fusion contributions is further emphasised when the
signal H → W+W− → νee

+µ−ν̄µ is considered. With no jet produced, the cross-
section for this process to NLO in QCD is approximately 5 fb at

√
s = 8 TeV and

12 fb at
√
s = 14 TeV. With a jet present, the cross-sections are 2 fb at

√
s = 8 TeV

and 5 fb at
√
s = 14 TeV. (These results were obtained using MCFM). Therefore the

gluon fusion contributions – an NNLO effect – to the background amount to about
half of the signal production cross-section.
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Figure 7.4: Distributions of the invariant mass of the charged lepton system mll, azimuthal
angle between the leptons ∆φll, transverse mass of the W -pair mT,WW , and transverse
momentum of the positron pT,e+, for the process pp → W+(→ νee

+)W−(→ µ−ν̄µ)j at the√
s = 8 TeV LHC. The Higgs cuts described in the text are used. The NLO differential

cross-section is shown in red; this cross-section plus the NNLO contribution arising from
gluon fusion is shown in blue. The upper and lower bands show the scale variation between
µ = mW and µ = 4mW . The factor KNLO as defined in equation (7.4.2) is shown in the
lower panes.

Four distributions of interest in Higgs searches at
√
s = 8 TeV – the invariant

mass of the lepton system mll, the azimuthal angle between the leptons ∆φll, the
transverse mass of theW -pairmT,WW (defined in equation (5.6.2)), and the transverse
momentum of the positron pT,e+ – are shown in figure 7.4. The NLO distributions have
been studied in ref. [46]; of interest here is the effect of the gluon fusion contribution
δσNNLO. The differential NLO K-factor is defined as

KNLO =
σNLO + δσNNLO

σNLO
(7.4.2)
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evaluated at the central scale µ = 2mW . This is shown together with the NLO
differential cross-sections, with and without δNNLO, for the Higgs cuts. TheK-factor
is relatively flat in all the distributions except mT,WW , where it increases drastically
between mT,WW = 50 GeV and mT,WW = 200 GeV. This distribution is used to test
for a Higgs signal [170], since it displays a much sharper drop-off for the signal than
for the WW -background [172]. A cut around the Higgs mass mH ∼ 125 GeV in this
distribution could therefore further increase the signal-to-background ratio, and it is
possible that such a cut will be used in future. This would decrease the effect of
the NNLO contribution. This further emphasises the highly cut-dependent nature of
this contribution: if the experimental setup changes markedly, a re-evaluation of the
importance of the background originating from gluon fusion is necessary.
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7.5 Conclusion

The gluon fusion contributions to the production of W+W− andW+W−j at the LHC
were studied in this chapter. At lowest order, these amplitudes proceed via a fermion
loop, which was computed using generalised unitarity. Consequently, the one-loop
amplitude is finite, and first enters the diboson production cross-section as an NNLO
correction. This contribution is enhanced by the large gluon flux at the LHC, and
thus may be important.

Regarded as a self-contained contribution to the NNLO cross-section, gluon fusion
enhances the NLO cross-section of W+W− and W+W−j by a moderate amount
of 3-5%, if generic cuts are used. However, if cuts designed to separate the Higgs
from the WW -background are used, then the contribution from gluon fusion becomes
more important. The NLO cross-section to W+W− is increased by 7-12%, and the
NLO cross-section to W+W−j is increased by 6-9%. These effects are comparable
to the NLO scale uncertainty, as well as to the Higgs signal cross-section. It is
noteworthy that the contribution is highly cut dependent. While refs. [42,43] found an
enhancement by around 30% due to gluon fusion, this was obtained using much more
stringent cuts than those presently employed at the LHC. The current experimental
setup justifies a conservative estimate for the gluon fusion effect of 10-15% of the
NLO cross-section. The results in this chapter would need to be reviewed should the
experimental cuts change drastically.
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Chapter 8

Summary and Outlook

8.1 Summary

In this thesis, I have discussed the computation of hadroproduction observables to
next-to-leading order (NLO) in perturbative QCD. At this level, both ultraviolet
and infrared singularities are present. The UV divergences are dealt with using the
process of renormalisation, while IR divergences cancel between the real and virtual
(one-loop) cross-sections. On a numerical level, this cancellation is realised within a
subtraction scheme using Catani-Seymour dipoles, as described in chapter 2.

In chapter 3, I presented a detailed discussion of the generalised unitarity approach
to performing the Ossola-Papadoupoulos-Pittau (OPP) subtraction. This enables
one-loop amplitudes to be expressed in terms of known scalar integrals and unitarity
coefficients. The functional form of the unitarity coefficients is known, allowing these
to be found by solving linear algebraic equations. To do so, virtual particles are put
on-shell and tree-level amplitudes are computed. An extension of this procedure to
higher dimensions for the internal momenta and polarisations allows the rational part
of the amplitude to be found in various regularisation schemes.

I presented techniques used to compute tree-level amplitudes, including the as-
signment of polarisation vectors in higher dimensions and Berends-Giele currents, in
chapter 4. These off-shell currents allow gluons to be added recursively to currents
with up to three quark-antiquark pairs and up to two electroweak bosons. They are
an efficient yet flexible way to compute colour-ordered primitive amplitudes.

I presented the application of these techniques to the NLO computation of two pro-
cesses of interest in hadron collider phenomenology: the hadroproduction ofW+W+jj
(chapter 5) and of W+W−jj (chapter 6). The hadroproduction of W+W+jj is un-
usual in that the restriction of two observed jets may be lifted without the cross-
section diverging. This allows the study of W+W+ production in association with
zero, one, two, or more jets. The cross-sections for exclusive production in association
with zero and one jets and inclusive production in association with two jets show a
moderate change from the NLO corrections. However, the factorisation and renor-
malisation scale dependence is greatly reduced. The same is true of the kinematic
distributions. The exclusive production in association with two jets is less satisfac-
tory: the NLO corrections do not reduce the scale uncertainty, and in fact allow the
cross-section to become negative for small scales. It is suggested that increasing the
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jet cut will ameliorate this situation. These results imply that the jets produced in
this event are typically quite hard, and that a sizeable number of events with at least
two associated jets will have three.

The hadroproduction of W+W−jj is of particular interest as a background to
Higgs production in association with two jets, with the Higgs decaying via the second-
most important channel, H → WW . Production at the Tevatron using a Higgs-search
setup, and at the LHC using a more generic setup, were studied. In both cases, the
NLO corrections serve to decrease the cross-section by 10-20%, and again greatly
reduce the scale uncertainty of both cross-sections and distributions. The dependence
of the LHC cross-section on the centre-of-mass energy is found to be close to linear,
suggesting a way to scale these results to future energies. Kinematic distributions
relevant to Higgs searches, mostly involving the angular distribution of leptons and
jets, were also discussed.

Finally, the hadroproduction of W+W−j through gluon-fusion was studied in
chapter 7. This process first appears at one loop, and thus contributes to the next-
to-next-to-leading order (NNLO) corrections. However, in view of the fact that these
contributions are both finite and gauge invariant, they can be investigated in isola-
tion from the other NNLO corrections. The large gluon flux at high-energy hadron
colliders compensates in part for the additional strong coupling factor. It is found
that the effect of these contributions is around 3-5% for generic cuts, but increases to
6-9% for cuts designed to suppress the background relative to Higgs production. This
enhancement is much smaller than previously calculated for gluon-induced W+W−

production, due to the Higgs search cuts being less aggressive. Nevertheless, these
NNLO contributions should be taken into account for accurate background calcula-
tions.
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8.2 Outlook

It is remarkable to think that, as little as twenty years ago, calculations of even simple
processes to NLO in pQCD were challenging. Even more remarkable is the fact that,
in the 6 years since the first 2 → 4 process was computed to this accuracy, almost
all of the phenomenologically interesting processes appearing on the Les Houches
Experimentalists’ Wishlist [64–66] have been computed to NLO. However, I believe
there is still progress to be made on (at least) three important fronts.

First, there is the issue of accessibility of NLO computations. Most computations
are performed using private codes and the results made public for a choice of exper-
imental setup (centre-of-mass energy, cuts, etc.). If the experimental setup changes,
then the results may no longer be valid. Ideally, computations should be publicly
available, so that experimentalists can obtain new results if there is a major change
in experimental conditions. Availability can be made along two models. The first
model is along the lines of MCFM: a central program with a large list of available pro-
cesses, from which the user selects a process and a few simple options reflecting the
experimental setup. The second model is more along the lines of MadEvent: the user
enters arbitrary initial and final state particles, and the experimental setup. The
first is simpler to create and faster to run, the second is more flexible. Progress is
being made along both fronts: the W+W−j process is now available in MCFM, while
the GoSam and HELAC-NLO programs perform NLO calculations for processes with
user-defined particles. Related to this point are several unanswered questions related
to the optimisation of unitarity – for example, are on-shell recursion relations more
efficient than off-shell ones [179]?

Second, it is a known fact that NLO calculations are only reliable for inclusive
observables. Exclusive observables may be affected significantly by parton shower-
ing. Two methods of relating NLO partonic level calculations to parton showering
have emerged: POWHEG and MC@NLO. Implementing more processes, especially pro-
cesses with jets, in these frameworks is also important. Analytic resummations of
large logarithms originating from these low transverse momentum emissions is also
an important avenue of progress (see e.g. refs. [180] and [181]).

The third front is NNLO computations. These are challenging even for 2 → 2
processes. Yet the gluon-induced W+W− NNLO corrections can amount to more
than 10% of the total cross-section. It is true that other NNLO corrections may
reduce this, but it is not possible to say a priori what the effect of a full NNLO
calculation would be. Again, progress in this direction is being made (e.g. an NNLO
subtraction scheme was suggested in ref. [182], and top pair production is being
studied at this order [183, 184]).

With the discovery of the Higgs boson, the study of the electroweak symmetry
breaking mechanism has truly begun. Fully understanding the Higgs properties, as
well as searching for Beyond the Standard Model Physics, will be a process lasting
the rest of the lifetime of the LHC, if not longer. As the experimental programme at
the Large Hadron Collider intensifies, the demand for accurate theoretical predictions
for both signals and backgrounds will become even greater.
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